Multivariate Asset Return Prediction with Mixture Models


Marc Paolella (Swiss Banking Institute, University of Zürich, and Swiss Finance Institute)
  1. MMDSについて
  2. MMDSの教員・組織
  3. MMDSで学びたい方へ
  4. カリキュラム
  5. MMDSの活動

  6. 学内向け情報

大阪大学 金融・保険セミナーシリーズ 第36回(CSFI-CRESTジョイントセミナー)
Multivariate Asset Return Prediction with Mixture Models

Marc Paolella (Swiss Banking Institute, University of Zürich, and Swiss Finance Institute)

The use of mixture distributions for modeling asset returns has a long history in finance. New methods of demonstrating evidence for their necessity in the multivariate case is provided. The use of a two-component multivariate normal mixture distribution, coupled with shrinkage via a quasi-Bayesian prior, is motivated, and shown to be numerically trivial and reliable to estimate, unlike the majority of multivariate GARCH models in existence. Equally important, it provides a clear improvement over use of GARCH models feasible for use with a large number of assets, such as CCC, DCC, and their extensions, with respect to out-of-sample density forecasting. A generalization to a mixture of multivariate Laplace distributions is motivated via univariate and multivariate analysis of the data, and an EM-algorithm is developed for its estimation in conjunction with a quasi-Bayesian prior. It is shown to deliver significantly better forecasts than the mixed normal, with fast and numerically reliable estimation. Crucially, the distribution theory required for portfolio theory and risk assessment is developed.

講 師:
Marc Paolella (Swiss Banking Institute, University of Zürich, and Swiss Finance Institute)
テーマ:
Multivariate Asset Return Prediction with Mixture Models
日 時:
2010年12月21日(火)16:20-17:50
場 所:
大阪大学大学院基礎工学研究科 (豊中キャンパス)I 棟 204号室
参加費:
無料
アクセス:
会場までのアクセスは下記URLをご参照ください。
http://www.es.osaka-u.ac.jp/access/
お問い合せ:
本ウェブサイトの「お問い合せ」のページをご参照ください。