A systematic vector autoregressive framework for modelling and forecasting mortality
Jackie Li (Monash University)
大阪大学 数理・データ科学セミナー 金融・保険セミナーシリーズ 第142回
A systematic vector autoregressive framework for modelling and forecasting mortality
Jackie Li (Monash University)
Recently, there is a new stream of mortality forecasting research using the vector autoregressive model with different sparse model specifications. They are shown to be able to overcome some of the limitations of the more traditional factor models such as the Lee-Carter model. In this paper, we propose a more generalised systematic vector autoregressive framework for modelling and forecasting mortality. Under this framework, we incorporate subdiagonals and / or superdiagonals of parameters progressively into the autoregressive matrix to formulate a range of model structures in a systematic fashion. They offer much flexibility for coping with the mortality patterns of different populations. The resulting models produce age coherent forecasts, and their parameters are reasonably interpretable for modellers, demographers, and industry practitioners. Using the mortality data of England and Wales, France, Japan, and US, we demonstrate that the proposed approach produces decent fitting and forecasting performances.
講師: | Jackie Li (Monash University) |
---|---|
テーマ: | 大阪大学 数理・データ科学セミナー 金融・保険セミナーシリーズ 第142回 |
日時: | 2024年01月25日(木) 15:10-16:40 |
場所: | 大阪大学豊中キャンパス法経研究棟7階 小会議室 |
参加費: | 無料 |
参加方法: | |
アクセス: | 会場までのアクセスは下記URLをご参照ください。 https://www.osaka-u.ac.jp/ja/access/files/liwbll/@@download/file |
お問い合せ: | 本ウェブサイトの「お問い合せ」のページをご参照ください。 |