MMDS大阪大学 数理・データ科学教育研究センター
Center for Mathematical Modeling and Data Science,Osaka University

Data-driven Market Simulator for Small Data Environments

Blanka Horvath (King's College London)

大阪大学 数理・データ科学セミナー 金融・保険セミナーシリーズ 第113回

Data-driven Market Simulator for Small Data Environments

Blanka Horvath (King's College London)

In this talk we investigate how Deep Hedging brings a new impetus into the modelling of financial markets. While a DNN-based data-driven market generation unveils a new and highly flexible way of modelling financial time series, it is by no means "model-free". In fact, the concrete modelling choice is decisive for the features of the resulting generative model. After a very short walk through historical market models we proceed to neural network based generative modelling approaches for financial time series. We then investigate some of the challenges to achieve good results in the latter, and highlight some applications and pitfalls. While most generative models tend to rely on large amounts of training data, we present here a parsimonious generative model that works reliably even in environments where the
amount of available training data is notoriously small. Furthermore, we discuss how a rough paths perspective combined with a parsimonious Variational Autoencoder framework provides a powerful way for encoding and evaluating financial time series data in such environments. Lastly, we also discuss some pricing and hedging considerations in a DNN framework and their connection to Market Generation.

The talk is based on joint work with H. Buehler, I. Perez Arribaz, T. Lyons and B. Wood.

講師: Blanka Horvath (King's College London)
テーマ: 大阪大学 数理・データ科学セミナー 金融・保険セミナーシリーズ 第113回
日時: 2020年10月15日(木) 17:00-18:30
場所: Zoom によるオンラインセミナー
参加費: 無料
参加方法: 参加費は無料ですが下記のリンクより事前登録をお願いします。

https://sites.google.com/view/omfseminar/home

登録されたメールアドレス宛に参加用 URL をお送りします。
アクセス: 参加方法をご覧ください。
お問い合せ: 本ウェブサイトの「お問い合せ」のページをご参照ください。