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Abstract

The author proposes stochastic approximation methods of finding the optimal measure change
by the exponential-tilting for Lévy processes in Monte Carlo importance sampling variance re-
duction. In accordance with the structure of the underlying Lévy measure, either a constrained
or unconstrained algorithm of the stochastic approximation has to be chosen. For both cases,
the almost sure convergence to a unique stationary point is proved. Numerical examples are
presented to illustrate the effectiveness of our method.
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distribution, Robbins-Monro algorithm, variance reduction.
2000 Mathematics Subject Classification: 65C05, 62L20, 60E07, 60G51.

1 Introduction

The importance sampling method is aimed at reducing the variance of iid Monte Carlo summands
by appropriately transforming the underlying probability measure, from which interested random
variables or stochastic processes are generated, so as to put more weight on important events and
less on undesirable ones. Due to its practical effectiveness, it has long been thought of as one of the
most important variance reduction methods in the Monte Carlo simulation and has been intensively
studied in a wide range of applications, such as mathematical finance, queueing theory, sequential
analysis, to mention just a few. For its principle with some numerical examples, see, for instance,
Section 4.6 of Glasserman [7].

In the importance sampling “variance” reduction, the optimal measure change means nothing
but the one minimizing the variance of iid Monte Carlo summands. In the Gaussian framework, it
is well known by Girsanov theorem that the measure change is indexed by a single parameter, that
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is, the drift parameter, and several attempts have been made to find the optimum. In financial ap-
plications, for example, Glasserman, Heidelberger, and Shahabuddin [6] proposes an optimization
setting to find a nearly optimal measure change in pricing financial derivatives, while Su and Fu
[14] and Arouna [1] apply the stochastic approximation so as to achieve the root of the gradient,
with respect to the measure change parameter, of the Monte Carlo variance.

The aim of the present work is to apply the idea of [1, 14] to a class of Lévy processes with
no Brownian motion, or equivalently after discretization, a class of infinitely divisible distributions
without Gaussian component. In general, the measure change for Lévy processes involves every
single jump, which forms the sample paths of Lévy processes. (See Section 33 of Sato [12] for
details. For an importance sampling method with such intricate measure changes, see Kawai [8].)
In this paper, we however restrict ourselves to the simplest measure change, often called the Ess-
cher transform, which needs not take jumps of Lévy processes into account but has only to look
at the terminal marginals. The Esscher transform is nothing but the well known exponential tilting
of distributions and is thus indexed by a single parameter, just as in the Gaussian case. Indeed,
the Gaussian measure change is also an exponential tilting, which happens to be equivalent to the
drift change due to the structure of the Gaussian distribution. A crucial difference is however that
depending on the structure of the underlying Lévy measure, the exponential-tilting parameter for
the measure change might have to be in a bounded set, while the drift parameter of the Gaussian
distribution may be arbitrarily taken.

The rest of the paper is organized as follows. Section 2 recalls the Esscher transform and the
principle of the importance sampling variance reduction, and constructs the basis of our analysis.
In Section 3, the almost sure convergence of the stochastic approximation is proved separately for
the constrained and unconstrained algorithms, depending on the structure of the underlying Lévy
measure. Section 4 illustrates the effectiveness of our method via numerical examples for both
constrained and unconstrained stochastic approximation algorithms, and Section 5 concludes.

2 Preliminaries

Let us begin with some notations which will be used throughout the text. N is the collection of
all positive numbers, with N0 := {0} ∪ N. Rd is the d-dimensional Euclidean space with the
norm ‖ · ‖ and the inner product 〈·, ·〉, Rd

0 := Rd \ {0} and B(Rd
0) is the Borel σ-field of Rd

0.
(Ω,F ,P) is our underlying probability space. Leb(·) denotes the Lebesgue measure, while P|Ft is
the restriction of a probability measureP to theσ-fieldFt.Denote by∇ the gradient, and by Hess[·]
the Hessian matrix. The interval (0,−1] is understood to be [−1, 0). The expression f (x) ∼ g(x)
means f (x)/g(x) tends to 1. We say that a stochastic process {Xt : t ≥ 0} in Rd is a Lévy process
if it has independent and stationary increments, if it is continuous in probability, and if X0 = 0,
a.s. By the Lévy-Khintchine representation theorem, the characteristic function of its marginal

2



distributions is uniquely given by

E
[
ei〈y,Xt〉

]
= exp

[
t
(
i〈y, γ〉 − 1

2
〈y, Ay〉 +

∫
Rd

0

(
ei〈y,z〉 − 1 − i〈y, z〉1(0,1](‖z‖)

)
ν(dz)

)]
,

where γ ∈ Rd, A is a symmetric nonnegative-definite d × d matrix, and ν is a Lévy measure on
Rd

0, that is,
∫
Rd

0
(‖z‖2 ∧ 1)ν(dz) < +∞. When the above holds, then we say that the Lévy process

{Xt : t ≥ 0} is generated by the triplet (γ, A, ν). In this paper, we restrict ourselves to pure-jump
Lévy processes, that is, we set A ≡ 0 throughout. Moreover, we also assume that all components
of the marginal X1 are non-degenerate. A function f : Rd 7→ [0,∞) is said to be submultiplicative
if there exists a positive constant a such that f (x + y) ≤ a f (x) f (y) for x, y ∈ Rd. Letting c ∈ R,
γ ∈ Rd, and b > 0, if f (x) is submultiplicative on Rd, then f (cx + γ)b is submultiplicative, and the
functions ‖x‖ ∨ 1, e〈c,x〉 are submultiplicative, and a product of two submultiplicative functions is
submultiplicative. We recall an important moment property of Lévy processes, which will be used
often in what follows.

Theorem 2.1. (Sato [12], Theorem 25.3) Let f be a submultiplicative, locally bounded, measur-
able function on Rd, and let {Xt : t ≥ 0} be a Lévy process in Rd with Lévy measure ν. Then,
E[ f (Xt)] is finite for every t > 0 if and only if

∫
‖z‖>1

f (z)ν(dz) < +∞.

2.1 Esscher transform

Among the density transformations of Lévy processes, there is a simple class ending up with a
path-independent structure, which is built by exponential-tilting. The class is often called the
Esscher transform.

Let {Xt : t ≥ 0} be a Lévy process in Rd generated by (γ, 0, ν), and let (Ft)t≥0 be the natural
filtration of {Xt : t ≥ 0}. Define

Λ1 :=
{
λ ∈ Rd : EP

[
e〈λ,X1〉

]
< +∞

}
=

{
λ ∈ Rd :

∫
‖z‖>1

e〈λ,z〉ν(dz) < +∞
}
,

where the second equality holds by Theorem 2.1, and assume that Leb(Λ1) > 0 throughout. It
is known that the set Λ1 contains the origin and is convex. For λ ∈ Λ1, we denote by ϕ the
cumulant generating function of the marginal distribution at unit time of {Xt : t ≥ 0} under the
probability measure P, that is, ϕ(λ) := lnEP[e〈λ,X1〉]. For convenience in notation, we also denote
by ϕt(λ) := lnEP[e〈λ,Xt〉], t > 0, in view of

ϕt(λ) = lnEP
[
e〈λ,Xt〉

]
= t lnEP

[
e〈λ,X1〉

]
= tϕ(λ),

where the second equality holds by the infinite divisibility of the marginal distributions of Lévy
processes. Note that ϕ(λ) is continuous in λ ∈ Λ1. Under the probability measure Qλ, where
λ ∈ Λ1 and which is defined via the Radon-Nikodym derivative, for every t ∈ (0,+∞),

dQλ|Ft

dP|Ft

=
e〈λ,Xt〉

EP[e〈λ,Xt〉]
= e〈λ,Xt〉−ϕt(λ), P-a.s.,
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the stochastic process {Xt : t ≥ 0} is again a Lévy process generated by (γλ, 0, νλ), where γλ =
γ +

∫
‖z‖≤1

z(νλ − ν)(dz), and
νλ(dz) = e〈λ,z〉ν(dz). (2.1)

Then, the probability measures P|Ft and Qλ|Ft are mutually absolutely continuous for every t ∈
(0,+∞). We also get EQλ[e

−〈λ,X1〉] < +∞, and

dP|Ft

dQλ|Ft

=

(
dQλ|Ft

dP|Ft

)−1

= e−〈λ,Xt〉+ϕt(λ), Qλ-a.s.

For t > 0, let p be a probability density function on Rd of the random vector Xt under P, provided
that it is well defined. Then, the density function pλ of Xt underQλ is given by

pλ(x) = e〈λ,x〉−ϕt(λ) p(x), x ∈ Rd. (2.2)

2.2 Importance sampling variance reduction

Suppose we want to evaluate
C := EP[F(X)]

by Monte Carlo simulation, where F(X) := F({Xt : t ∈ [0,T ]}) ∈ L2(Ω,FT ,P), and assume
P(F(X) , 0) > 0. In view of the equality

EP[F(X)] = EQλ

[
dP|FT

dQλ|FT

F(X)
]
= EQλ

(dQλ|FT

dP|FT

)−1

F(X)
 = EQλ [e−〈λ,XT 〉+ϕT (λ)F(X)

]
,

define a set
Λ2 := Λ1 ∩

{
λ ∈ Rd : EP

[
e−〈λ,XT 〉F(X)2

]
< +∞

}
,

and suppose that Leb(Λ2) > 0. Let us now give a lemma, whose proof will be often adapted in
what follows.

Lemma 2.2. The set Λ2 is convex.

Proof. For any λ1, λ2 ∈ Λ2, and for any m ∈ (0, 1) and n = 1 − m, the Hölder inequality gives

EP
[
e−〈mλ1+nλ2,XT 〉F(X)2

]
≤ EP

[
e−〈λ1,XT 〉F(X)2

]m
EP

[
e−〈λ1,XT 〉F(X)2

]n
< +∞.

The convexity of Λ1 proves the assertion. �

For λ ∈ Λ2, the variance under the probability measureQλ is given by

V(λ) := EQλ

( dP|FT

dQλ|FT

)2

F(X)2

 −C2

= EP

(dQλ|FT

dP|FT

)−1

F(X)2

 −C2

= EP
[
e−〈λ,XT 〉+ϕT (λ)F(X)2

]
−C2.
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Define also a set

Λ3 := Λ2 ∩
{
λ ∈ Rd : EP

[
‖XT ‖2e−〈λ,XT 〉F(X)2

]
< +∞

}
,

and assume that Leb(Λ3) > 0.

Proposition 2.3. The set Λ3 is convex and V(λ) is strictly convex in λ ∈ Λ3.

Proof. The convexity of Λ3 can be proved in a similar manner to the proof of Lemma 2.2.
Since λ ∈ Λ3, by the Hölder inequality, we have

EP
[
‖XT ‖e−〈λ,XT 〉F(X)2

]
≤ EP

[
e−〈λ,XT 〉F(X)2

]1/2
EP

[
‖XT ‖2e−〈λ,XT 〉F(X)2

]1/2
< +∞,

and thus with the help of the dominated convergence theorem, we can obtain the gradient

∇V(λ) = EP
[
(∇ϕT (λ) − XT )e−〈λ,XT 〉+ϕT (λ)F(X)2

]
.

and also the Hessian

Hess[V(λ)] = EP
[(

Hess[ϕT (λ)] + (∇ϕT (λ) − XT )(∇ϕT (λ) − XT )′
)
e−〈λ,XT 〉+ϕT (λ)F(X)2

]
.

Then, for y ∈ Rd
0,

yT Hess[V(λ)]y = EP
[(

y′Hess[ϕT (λ)]y + 〈y,∇ϕT (λ) − XT 〉2
)
e−〈λ,XT 〉+ϕT (λ)F(X)2

]
> 0,

since Hess[ϕT (λ)] reduces to the variance-covariance matrix of the random vector XT under the
probability measureQλ, which is clearly positive definite. The proof is complete. �

Remark 2.4. The definition of the sets Λ2 and Λ3 is less intuitive and is of less practical use. We
may instead give more intuitive definition in connection with the Lévy measure by giving up some
part of its domain as

Λ′2 =

{
λ ∈ Rd :

∫
‖z‖>1

e−q〈λ,z〉ν(dz) < +∞,EP
[
|F(X)|2p

]
< +∞, 1

p
+

1
q
= 1 for some p > 1

}
,

and

Λ′3 =

{
λ ∈ Rd :

∫
‖z‖>1
‖z‖2qe−q〈λ,z〉ν(dz) < +∞,EP

[
|F(X)|2p

]
< +∞, 1

p
+

1
q
= 1 for some p > 1

}
.

It is easy to check that both Λ′2 and Λ′3 are convex, and that Λ′2 ⊆ Λ2, Λ′3 ⊆ Λ3, and Λ′3 ⊆ Λ′2.
They are derived as follows. By the Hölder inequality, with 1/p + 1/q = 1 for some p > 1 and for
k = 0, 2,

EP
[
‖XT ‖ke−〈λ,XT 〉F(X)2

]
≤ EP

[
|F(X)|2p

]1/p
EP

[
‖XT ‖kqe−q〈λ,XT 〉

]1/q
.

By Theorem 2.1, the finiteness of the second expectation of the above right hand side for each
k = 0, 2 is equivalent to

∫
‖z‖>1
‖z‖kqe−q〈λ,z〉ν(dz) < +∞ for corresponding k. This, with k = 0, asserts

the definition of Λ2, while the definition of Λ3 is verified with k = 2.
Meanwhile, as soon as F(X) reduces to f (XT ) with f being submultiplicative, the set Λ3 is

identical to {
λ ∈ Rd :

∫
‖z‖>1

[
e〈λ,z〉 ∨

(
‖z‖2e−〈λ,z〉 f (z)2

)]
ν(dz) < +∞

}
,

by Theorem 2.1. �
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3 Convergence of stochastic approximation algorithms

We begin with recalling the stochastic approximation algorithms. Let {Xn,t : t ∈ [0,T ]}n∈N be iid
copies of the stochastic process {Xt : t ∈ [0, T ]}. For simplicity in notation, we will write Xn := Xn,T

for n ∈ N, and F(X)n := F({Xn,t : t ∈ [0,T ]}). Let H be a connected set in Rd with {0} ∈ H, and
define a sequence {Yn}n∈N of random vectors in Rd by

Yn+1 = (∇ϕ(λn) − Xn+1) e−〈λn,Xn+1〉+ϕ(λn)F(X)2
n+1,

where λ0 ∈ H, {λn}n∈N is a sequence of random vectors in Rd iteratively generated by

λn+1 = ΠH [λn − εnYn+1] , (3.1)

where ΠH is the projection onto the constraint set H and where {εn}n∈N0 is a sequence of positive
constants satisfying ∑

n∈N0
εn = +∞,

∑
n∈N0
ε2n < +∞. (3.2)

Moreover, define the filtration (Gn)n∈N0 by

Gn := σ ({λk}k≤n, {Xk}k≤n) .

In what follows, “the constrained algorithms” means the algorithms where the constraint set H
in (3.1) is a compact set inRd and the sequence {λn}n∈N0 is required to stay in the set, while by “the
unconstrained algorithms” we mean the ones whose constraint set H is extended toRd, that is, the
sequence {λn}n∈N0 may be arbitrarily taken in Rd.

Define a set

Λ4 := Λ1 ∩
{
λ ∈ Rd : EP

[
‖XT ‖ke−2〈λ,XT 〉F(X)4

]
< +∞, k = 0, 2

}
.

We will below see that as long as the iterates remain in Λ4, the algorithm converges P-a.s. to a
unique stationary point. Hence, if Λ4 = R

d, then the algorithm is clearly unconstrained. It is
however difficult to check whether or not that is the case, since the set Λ4 depends on the operator
F. Meanwhile, to be unconstrained, we need at least Λ4 ⊆ Λ1 = R

d. In this sense, let us give a
rough illustration of the situation in the following.

Lemma 3.1. If the Lévy measure ν has a compact support, thenΛ1 = R
d. If

∫
‖z‖>1

e‖z‖
1+δ
ν(dz) < +∞

for some δ > 0, then Λ1 = R
d.

3.1 Constrained algorithms

The following proves the almost sure convergence for the constrained algorithms. Their gradient-
based structure simplifies the argument.

6



Theorem 3.2. Assume that Leb(Λ4) ∈ (0,+∞), and λ0 ∈ Λ4. Let H be a compact set such that
H ⊆ Λ4. Then, there exists λ∗ ∈ H such that the sequence {λn}n∈N0 in (3.1) converges P-a.s. to λ∗.
Moreover, V(λ∗) ≤ V(0).

Proof. First, note that EP[e−〈λ,XT 〉F(X)2] < +∞ since EP[e−2〈λ,XT 〉F(X)4] < +∞, and that by the
Hölder inequality,

EP
[
‖XT ‖2e−〈λ,XT 〉F(X)2

]
≤ EP

[
‖XT ‖2

]1/2
EP

[
‖XT ‖2e−2〈λ,XT 〉F(X)4

]1/2
< +∞.

Hence, Λ4 ⊆ Λ3. The convexity of Λ4 can be proved in a similar manner to the proof of Lemma
2.2. Moreover, we have

EP
[
‖XT ‖e−2〈λ,XT 〉F(X)4

]
≤ EP

[
e−2〈λ,XT 〉F(X)4

]1/2
EP

[
‖XT ‖2e−2〈λ,XT 〉F(X)4

]1/2
< +∞.

Now, note that

sup
n∈N
EP

[
‖Yn‖2

]
≤ sup
λ∈H
EP

[
‖∇ϕT (λ) − XT ‖2e−2〈λ,XT 〉+2ϕT (λ)F(X)4

]
,

and since ‖∇ϕ(λ)‖ < +∞ and ϕ(λ) < +∞, for λ ∈ H, the expectation of the above right hand
side is finite if and only if EP[‖XT ‖ke−2〈λ,XT 〉F(X)4] < +∞ for each k = 0, 1, 2. This proves
supn∈NEP[‖Yn‖2] < +∞. Since Λ4 is convex, by Theorem 2.1 (pp.127) of Kushner and Yin [11],
the sequence {λn}n∈N0 convergesP-a.s. to a unique stationary point in H. The last assertion follows
from the strict convexity of V on H. �

Remark 3.3. It is not clear whether or not there exists λ ∈ H such that ∇V(λ) = 0, and thus the
above stationary point λ∗ ∈ H does not necessarily attain ∇V(λ∗) = 0. If, however, there happens
to exist λ ∈ H such that ∇V(λ) = 0, then ∇V(λ∗) = 0 is guaranteed by the strict convexity of V on
Λ4. �

Remark 3.4. We may give some modifications of the set Λ4 so that it looks more intuitive, as in
Remark 3.3. If F(X) = f (XT ) with f being submultiplicative, then Λ4 can be rewritten as

Λ4 =

{
λ ∈ Rd :

∫
‖z‖>1

[
e〈λ,z〉 ∨ ‖z‖2e−2〈λ,z〉 f (z)4

]
ν(dz) < +∞

}
.

Otherwise, by the Hölder inequality,

Λ′4 =

{
λ ∈ Rd :

∫
‖z‖>1
‖z‖2qe−2q〈λ,z〉ν(dz) < +∞,EP

[
|F(X)|4p

]
< +∞, 1

p
+

1
q
= 1 for some p > 1

}
,

which is a convex subset of Λ4. �
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3.2 Unconstrained algorithms

The following result asserts the existence of a single point λ∗ such that ∇V(λ∗) = 0. Recall again
that in the constrained algorithm case, the limiting stationary point does not necessarily attain the
root of the gradient.

Proposition 3.5. If Λ4 = R
d and if there exists c > 0 such that

M := inf
‖y‖=1

∫
‖z‖≤c
〈y, z〉21[0,c] (〈y, z〉) ν(dz) > 0, (3.3)

then there exists a unique λ∗ ∈ Rd such that ∇V(λ∗) = 0.

Remark 3.6. Most applications use Lévy processes with independent components and with each
component possessing small jumps in both positive and negative directions. In such cases, their
Lévy measures are supported on all the axes of Rd, that is,

ν(dz1, . . . , dzd) =
∑d

k=1
δ0(dz1) · · · δ0(dzk−1)νk(dzk)δ0(dzk+1) · · · δ0(dzd),

for some Lévy measures {νk}k=1,...,d on R0. We then get

M = inf
‖y‖=1

∑d

k=1
y2

k

∫
zk∈(0,sgn(yk)c]

z2
kνk(dzk) > 0.

In Example 4.2 below, we discretize a Lévy process of positive and negative jumps on a finite time
horizon into a few independent increments, and thus the condition (3.3) holds true. �

Proof. By Proposition 2.3 with Λ3 ⊇ Λ4 = R
d, it suffices to show that lim‖λ‖↑+∞ V(λ) = +∞. First

note that with a suitable γc ∈ Rd,

ϕ(λ) − 〈λ, γc〉 =
∫
‖z‖>c

(
e〈λ,z〉 − 1

)
ν(dz) +

∫
‖z‖≤c

(
e〈λ,z〉 − 1 − 〈λ, z〉

)
ν(dz).

The first component of the right hand side above is bounded from below by −ν({z ∈ Rd
0 : ‖z‖ > c})

since Λ1 = R
d. For the second component, since ex − 1 − x ≥ 0, x ∈ R, we have∫

‖z‖≤c

(
e〈λ,z〉 − 1 − 〈λ, z〉

)
ν(dz) ≥ inf

‖y‖=1

∫
‖z‖≤c

(
e‖λ‖〈y,z〉 − 1 − ‖λ‖〈y, z〉

)
ν(dz)

≥ inf
‖y‖=1

∫
‖z‖≤c

(
e‖λ‖〈y,z〉 − 1 − ‖λ‖〈y, z〉

)
1[0,c] (〈y, z〉) ν(dz)

≥ M‖λ‖2.

Therefore, we get

EP
[
e−〈λ,XT 〉+ϕT (λ)F(X)2

]
= eϕT (λ)−T 〈λ,γc〉EP

[
e−〈λ,XT−Tγc〉F(X)2

]
≥ eϕT (λ)−T 〈λ,γc〉EP

[
e−‖λ‖‖XT−Tγc‖F(X)21 (‖XT − Tγc‖ ≤ M‖λ‖/2)

]
≥ eT (M‖λ‖2/2−ν({z∈Rd

0:‖z‖>c}))EP
[
F(X)21(‖XT − Tγc‖ ≤ M‖λ‖/2)

]
,

which explodes as ‖λ‖ ↑ +∞. This proves the assertion. �
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The unconstrained algorithms often show a rough numerical behavior, and unfortunately, that is
the case in our setting. This phenomenon is mainly due to the extremely fast grow ofEP[‖∇ϕT (λ)−
XT ‖2e−2〈λ,XT 〉+2ϕT (λ)F(X)4] with respect to ‖λ‖. Alternatively, Chen, Guo, Gao [4] proposes a pro-
jection procedure. In essence, by forcing the iterates to stay in an increasing sequence of compact
sets, the procedure avoids the explosion of the algorithm during the early stage. Meanwhile, we
adapt the results of Chen and Zhu [3] and Delyon [5]. Let {Hn}n∈N0 be an increasing sequence of
compact sets such that ∪n∈N0 Hn = R

d, and modify the algorithm (3.1) as

λn+1 = ΠHσ(n)[λn − εnYn+1], (3.4)

where σ(n) counts the number of projections up to the n-th step.

Theorem 3.7. Assume that Λ4 = R
d and that there exists a unique λ∗ such that ∇V(λ∗) = 0. Then,

the sequence {λn}n∈N0 in (3.4) converges P-a.s. to λ∗. Moreover, limn↑+∞ σ(n) < +∞, P-a.s.

Proof. Let m ∈ N and define for n ∈ N0,

Mn :=
∑n

k=0
εk (Yk+1 −EP [Yk+1 | Gk])1(‖λk‖ < m).

By Proposition 3.5 and the results in [3, 5], we are only to show that for each m ∈ N, {Mn}n∈N0

convergesP-a.s. Since the sequence {Mn}n∈N0 is a martingale with respect to the filtration (Gn)n∈N0 ,
it suffices to show that {Mn}n∈N0 is a L2-martingale. To this end, for each m ∈ N, we will show that,
P-a.s.,∑

n∈N0
ε2nEP

[
‖Yn+1‖21(‖λn‖ ≤ m)

∣∣∣Gn

]
=

∑
n∈N0
ε2nEP

[
‖∇ϕT (λn) − XT ‖2 e−2〈λn,XT 〉+2ϕT (λn)F(X)41 (‖λn‖ ≤ m)

∣∣∣Gn

]
< +∞.

We begin with proving that for each m ∈ N, the following four quantities are well defined:

C1(m) := sup
‖λ‖≤m

∣∣∣∣∣∣
∫
‖z‖>1

(
e〈λ,z〉 − 1

)
ν(dz)

∣∣∣∣∣∣ ,
C2(m) := sup

‖λ‖≤m

∣∣∣∣∣∣
∫
‖z‖≤1

(
e〈λ,z〉 − 1 − 〈λ, z〉

)
ν(dz)

∣∣∣∣∣∣ ,
C3(m) := sup

‖λ‖≤m

∫
‖z‖>1
‖z‖e〈λ,z〉ν(dz),

C4(m) := sup
‖λ‖≤m

∫
‖z‖≤1
‖z‖

∣∣∣e〈λ,z〉 − 1
∣∣∣ ν(dz).

Clearly, C1(m) is finite since Λ1 = R
d and ν({z ∈ Rd

0 : ‖z‖ > 1}) < +∞, while the finiteness
of C2(m) follows from e〈λ,z〉 − 1 − 〈λ, z〉 ∼ 〈λ, z〉2 ≤ ‖λ‖2‖z‖2 as ‖z‖ ↓ 0. For C3(m), the Hölder
inequality gives the assertion, that is, with 1/p + 1/q = 1 for some p > 1,∫

‖z‖>1
‖z‖e〈λ,z〉ν(dz) ≤

[∫
‖z‖>1
‖z‖pν(dz)

]1/p [∫
‖z‖>1

e〈qλ,z〉ν(dz)
]1/q

< +∞,
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again with the help ofΛ1 = R
d. Finally, the finiteness of C4(m) holds by ‖z‖|e〈λ,z〉−1| ∼ ‖z‖|〈λ, z〉| ≤

‖λ‖‖z‖2 as ‖z‖ ↓ 0.
Let us now proceed to the main part of the proof. First, as previously, note that

ϕ(λ) − 〈λ, γ〉 =
∫
‖z‖>1

(
e〈λ,z〉 − 1

)
ν(dz) +

∫
‖z‖≤1

(
e〈λ,z〉 − 1 − 〈λ, z〉

)
ν(dz).

Both the first and the second integrals of the right hand side above are well defined due to the
finiteness of C1(m) and C2(m), respectively. Hence, we get

|ϕ(λ) − 〈λ, γ〉| ≤ C1(m) +C2(m) =: C5(m).

Next, note that

∇ (ϕ(λ) − 〈λ, γ〉) =
∫
‖z‖>1

ze〈λ,z〉ν(dz) +
∫
‖z‖≤1

z
(
e〈λ,z〉 − 1

)
ν(dz),

where the passages to the gradient operator are verified by the finiteness of C3(m) and C4(m), and
thus

‖∇ (ϕ(λ) − 〈λ, γ〉)‖ ≤ C3(m) +C4(m) =: C6(m).

In total, we get for each m ∈ N,

EP
[
‖∇ϕT (λ) − XT ‖2 e−2〈λ,XT 〉+2ϕT (λ)F(X)41 (‖λ‖ ≤ m)

∣∣∣Gn

]
≤ EP

[
(‖XT − γT‖ +C6(m)T )2 e−2〈λ,XT−γT 〉+2C5(m)T F(X)41 (‖λ‖ ≤ m)

∣∣∣Gn

]
,

which is bounded P-a.s., since Λ4 = R
d. The proof is complete. �

4 Numerical examples

In this section, we give two numerical examples, corresponding to the constrained and uncon-
strained stochastic approximation algorithms. We will evaluate the efficiency of the importance
sampling variance reduction by the ratio of variances (vratio), defined by

(vratio) :=
VarP(F(X))

VarQλN ((dP/dQλN )F(X))
.

Example 4.1. (Constrained algorithm) Let X := (X1, . . . , X5)′ be an infinitely divisible random
vector with independent and identically distributed components under the probability measure P,
where the common Lévy measure ν on R0 for each component is the Meixner type of Schoutens
and Teugels [13], characterized by three parameters (a, b, d) in the form of

ν(dz) = d
exp(bz/a)

z sinh(πz/a)
dz, z ∈ R0,
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where a > 0, b ∈ (−π, π), and d > 0. It is very convenient that the probability density function p of
X1 is given in closed form by

p(x) =
(2 cos(b/2))2d

2aπΓ(2d)
ebx/a

∣∣∣∣∣Γ (d + ix
a

)∣∣∣∣∣2 . (4.1)

It is easy to prove that

Λ1 =

{
λ ∈ R :

∫
|z|>1

eλzν(dz) < +∞
}5

=

(
−π − b

a
,
π − b

a

)5

.

Then, for λ ∈ Λ1, we can obtain

ϕ(λ) =
∑5

k=1
2d

[
ln

(
cos

b
2

)
− ln

(
cos

b + aλk

2

)]
.

Since the exponential tail decay of the Lévy measure dominates each polynomial moment, we get,
for λ ∈ Λ1 and for each k ∈ N,

∫
|z|>1
|z|keλzν(dz) < +∞, or equivalently EP[‖X‖ke〈λ,X〉] < +∞. This

verifies the finiteness of every polynomial moment and thus

∇ϕ(λ) =
(
2ad tan

b + aλ1

2
, · · · , 2ad tan

b + aλ5

2

)′
.

For a numerical example, we will consider an Asian payoff

F(X) = max
[
0,

1
5

∑5

k=1
S 0e

∑k
l=1 Xl−kϕ((1,0,0,0,0)′) − K

]
.

For the condition EP[|F(X)|2p] < +∞, it is sufficient to have
∫
|z|>1

e2pzν(dz) < +∞. With p > 1,
we get p ∈ (1,+∞) ∩ ((−π − b)/(2a), (π − b)/(2a)), provided that π − b > 2a. Next, the condition∫
|z|>1
|z|2qe−qλzν(dz) < +∞ yields b/a − qλ ∈ (−π/a, π/a), and in view of the interval of q, we get

Λ′2 = Λ1 ∩
(
b − π

a

([
1 − 2a
π − b

]
∧ 1

)
,

b + π
a

([
1 − 2a
π − b

]
∧ 1

))5

,

provided that π − b > 2a. In a similar manner, we can prove Λ′3 = Λ
′
2 and

Λ′4 = Λ1 ∩
(
b − π

2a

([
1 − 4a
π − b

]
∧ 1

)
,

b + π
2a

([
1 − 4a
π − b

]
∧ 1

))5

,

provided that π − b > 4a.
We set the parameters for the Meixner distribution by (a, b, d) = (0.1, 0.0, 1.0), and thus an

effective domain is approximately Λ′4 = (−13.707963, 13.707963)5. The constraint set H must be
compact, so it is safe to set H = [−13.70796, 13.70796]5 ⊂ Λ′4. We generate N = 1e+5 Monte
Carlo summands with the full help of the closed-form density function (4.1). With those runs,
we perform the constrained algorithm (3.1) with εn = α/(n + 1) and λ0 = {0}. For the ATM
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case (K = 100), a OTM case (K = 125), and a deep OTM case (K = 150), we draw in Fig-
ure 1 a sequence {λn}n∈N0 of iteratively generated exponential-tilting parameters in R5 (left), and
a sequence {‖∇V(λn)‖}n∈N0 of the absolute gradient levels (right), which is “desired” to achieve
limn↑+∞ ‖∇V(λn)‖ = 0, P-a.s. (As pointed out in Remark 2.4, it is not clear whether or not the
constraint set H contains λ∗ such that ∇V(λ∗) = 0.) Finally, each figure on the right presents the
convergence of the Monte Carlo estimate EP[F(X)] (MC) and that of the importance sampling
Monte Carlo estimate EQλN [(dP/dQλN )F(X)] (IS MC), of which λN is the exponential-tilting pa-
rameter obtained after 1e+5 of the stochastic approximation iterations, while the three vertical
lines indicate C̃ := EQλN [(dP/dQλN )F(X)], 0.99C̃ and 1.01C̃.
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The ATM (K=100) case with α = 5e+0. The vratio is 5.063.
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Figure 1: {λn}n∈N0 (left) and {‖∇V(λn)‖}n∈N0 (middle), while EP[F(X)] (MC) and
EQλN [(dP/dQλN )F(X)] (IS MC) (right).

12



The absolute gradient level tends to decrease as expected, and the resulting importance sam-
pling succeeds in reducing the Monte Carlo variance. Although the sequence {λn}n∈N0 seems to
have converged to a point in the interior of H, the absolute gradient level has not converged to
zero. On contrary, the absolute gradient level seems to have already converged to zero, while a
component of {λn}n∈N0 seems to stay at the upper boundary (=+13.70796) in the ATM (K=100)
and in the OTM (K=125). Those are delicate and unsolved matters in the constrained algorithms.

Example 4.2. (Unconstrained algorithm) Let X := (X1, . . . , X5)′ be an infinitely divisible random
vector inR5 with independent and identically distributed components, whose common Lévy mea-
sure ν on R0 of each component is given in the form of the standard Gaussian density function,

ν(dz) =
1
√

2π
e−

1
2 z2

dz.

Evidently, for each λ ∈ R,
∫
|z|>1

eλzν(dz) < +∞. Letting λ := (λ1, . . . , λ5)′, with the help of the
independence of the components, we get Λ1 = R

5,

ϕ(λ) =
∑5

k=1

(
e

1
2λ

2
k − 1

)
,

and
∇ϕ(λ) =

(
λ1e

1
2λ

2
1 , . . . , λ5e

1
2λ

2
5

)′
.

Due to the compound Poisson structure, the random vector under the probability measure P can
be generated as

X ←
(∑N1

n=1
W1,n, . . . ,

∑N5

n=1
W5,n

)′
,

where {Nn}n≤5 is a sequence of iid Poisson random variables with unit parameter and {Wk,n}k≤5,n∈N

is an iid standard Gaussian random array. Now, in view of (2.1), the Lévy measure under the
probability measureQλ is given by

νλ(dz) = eλzν(dz) =
1
√

2π
e

1
2λ

2
e−

1
2 (z−λ)2

dz,

which is just like a drift shift of the Gaussian density by λ (up to the constant e
1
2λ

2
). Then, the

random vector under the new probability measureQλ can be generated as

X ←
(∑N1

n=1

(
W1,n + λ1

)
, . . . ,

∑N5

n=1

(
W5,n + λ5

))′
=

(∑N1

n=1
W1,n + λ1N1, . . . ,

∑N5

n=1
W5,n + λ5N5

)′
, (4.2)

where {Nn}n≤5 is now a sequence of iid Poisson random variables with parameter e
1
2λ

2
(≥ 1) and

where {Wk,n}k≤5,n∈N remains to be an iid standard Gaussian random array. For any λ ∈ Rd
0, the com-

ponentwise variance tends to increase by factor e
1
2λ

2
k since EQλ[

∑Nk
n=1 Wk,n] = EQλ[Nk]EQλ[Wk,1],

while the drift shift λk is further accelerated by factor e
1
2λ

2
k on average.
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In the above setting, we consider a digital payoff

F(X) = 1(S 1 < 100 − K, S 2 > 100 + K, S 3 < 100 − K, S 4 > 100 + K, S 5 < 100 − K),

for a suitable K and where S n = 100 exp[
∑n

k=1 Xk − nϕ((1, 0, 0, 0, 0)′)], n ≤ 5. Since |F(X)| ≤
1, P-a.s., we get Λ4 = R

5. We generate N = 1e+5 Monte Carlo summands and perform the
unconstrained algorithm (3.4) with εn := α/(n + 1), Hn := {λ ∈ Rd : ‖λ‖ ≤ 10 ln(100(n + 1))}, and
λ0 := {0}. In Figure 2, for K = 5, 20, and 40, we draw a sequence {λn}n∈N0 of iteratively generated
exponential-tilting parameters in R5 (left), and a sequence {‖∇V(λn)‖}n∈N0 of the absolute gradient
levels (right), which is “supposed” to achieve limn↑+∞ ‖∇V(λn)‖ = 0,P-a.s. Each figure on the right
presents the convergence of the Monte Carlo estimate EP[F(X)] (MC) and that of the importance
sampling Monte Carlo estimate EQλN [(dP/dQλN )F(X)] (IS MC), of which λN is the exponential-
tilting parameter obtained after 1e+5 of the stochastic approximation iterations, while the three
vertical lines indicate C̃ := EQλN [(dP/dQλN )F(X)], 0.98C̃ and 1.02C̃.

As the result in Example 4.1, the algorithm reduces the absolute gradient level as expected, and
the resulting importance sampling succeeds in reducing the Monte Carlo variance. Unlike in the
constrained algorithm case, there exists a unique optimum λ∗ which makes the absolute gradient
level zero, which seems to be in fact nearly attained.

5 Concluding remarks

In this paper, we have studied stochastic approximation methods of finding the optimal measure
change for Lévy processes in Monte Carlo importance sampling variance reduction. Our analysis
is, on one hand, valid on the basis of the restriction to the exponential-tilting measure change, that
is, limiting the density to a function the terminal value XT . It would thus be very interesting to
extend to the intricate series representation setting of [8] by using characterizing parameters of the
Lévy measure in the stochastic approximation procedure, which will be studied elsewhere. On
the other hand, our method should be applicable to a variety of applications in the sense that its
principle is not specific to the structure of Monte Carlo estimator itself. Finally, the extension of
our framework to the combined importance sampling and control variates is investigated using a
two-time-scale version of the stochastic approximation algorithm in subsequent papers [9, 10].
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Figure 2: {λn}n∈N0 (left) and {‖∇V(λn)‖}n∈N0 (middle), while EP[F(X)] (MC) and
EQλN [(dP/dQλN )F(X)] (IS MC) (right).
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