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ABSTRACT. This paper is concerned with a class of infinite-time horizon optimal stopping problems for
spectrally negative Lévy processes. Focusing on strategies of threshold type, we write explicit expressions
for the corresponding expected payoff via the scale function, and further pursue optimal candidate threshold
levels. We obtain and show the equivalence of the continuous/smooth fit condition and the first-order
condition for maximization over threshold levels. This together with problem-specific information about
the payoff function can prove optimality over all stopping times. As examples, we give an alternative proof
for the perpetual American option pricing problem and solve an extension to Egami and Yamazaki [17].
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1. INTRODUCTION

Optimal stopping problems arise in various areas ranging from the classical sequential testing/change-point
detection problems to applications in finance. Although all formulations reduce to the problem of maximiz-
ing/minimizing the expected payoff over a set of stopping times, the solution methods are mostly problem-specific;
they depend significantly on the underlying process, payoff function and time-horizon. This paper pursues a com-
mon tool for the class of infinite-time horizon optimal stopping problems for spectrally negative Lévy processes, or
Lévy processes with only negative jumps.

By extending the classical continuous diffusion model to the Lévy model, one can achieve richer and more
realistic models. In mathematical finance, the continuity of paths is empirically rejected and cannot explain, for
example, the volatility smile and non-zero credit spreads for short-maturity corporate bonds. These issues can
often be alleviated by introducing jumps; see, e.g. [12, 20]. Naturally, however, the optimal stopping problem
becomes more challenging and cannot enjoy a number of results obtained under the continuity of paths. In the case
of one-dimensional continuous diffusion, a full characterization of the value function is known and some practical
methods have been developed (see e.g. [2, 13, 14]). Most of these results rely heavily on the continuity assumption;
once jumps are involved, only problem-specific approaches are currently available.
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Despite these differences, there exists a common tool known as the scale function for both continuous diffusion
and spectrally negative Lévy processes. The scale function for the former enables one to transform a problem
of any arbitrary diffusion process to that of a standard Brownian motion. For the latter, the scale function has
been playing a central role in expressing fluctuation identities for a general spectrally negative Lévy process (see
[8, 21]). By taking advantage of the potential measure that can be expressed using the scale function, one can
obtain the overshoot distribution at the first exit time, which is generally a big hurdle that typically makes the
problem intractable.

The objective of this paper is to pursue, with the help of the scale function, a common technique for the class
of optimal stopping problems for spectrally negative Lévy processes. Focusing on the first time it down-crosses a
fixed threshold, we express the corresponding expected payoff in terms of the scale function. This semi-explicit
form enables us to differentiate and take limits thanks to the smoothness and asymptotic properties of the scale
function as obtained, for example, in [11, 21]. By differentiating the expected payoff with respect to the threshold
level, we obtain the first-order condition as well as the candidate optimal level that makes it vanish. We also
obtain the continuous/smooth fit condition when the process is of bounded variation or when it contains a diffusion
component. These conditions are in fact equivalent and can be obtained generally under mild conditions.

The spectrally negative Lévy model has been drawing much attention recently as a generalization of the classi-
cal Black-Scholes model in mathematical finance and also as a generalization of the Cramér-Lundberg model in
insurance. A number of authors have succeeded in extending the classical results to the spectrally negative Lévy
model by way of scale functions. We refer the reader to [6, 7] for stochastic games, [5, 22, 25] for the optimal
dividend problem, [1, 4] for American and Russian options, and [15, 23, 24] for Credit Risk. In particular, Egami
and Yamazaki [17] modeled and obtained the optimal timing of capital reinforcement. As an application of the
results obtained in this paper, we give an alternative proof of the perpetual American (put) option pricing as well
as an extension and its analytical solution to [17].

The rest of the paper is organized as follows. In Section 2, we review the optimal stopping problem for spectrally
negative Lévy processes, and then express the expected value corresponding to the first down-crossing time in terms
of the scale function. In Section 3, we obtain the first-order condition as well as the continuous/smooth fit condition
and show their equivalence. In Section 4, we solve the American option pricing problem and an extension to [17].
We conclude the paper in Section 5.

2. THE OPTIMAL STOPPING PROBLEM FOR SPECTRALLY NEGATIVE LÉVY PROCESSES

Let (Ω,F ,P) be a probability space hosting a spectrally negative Lévy processX = {Xt : t ≥ 0} characterized
uniquely by the Laplace exponent

ψ(β) := E0
[
eβX1

]
= cβ +

1

2
σ2β2 +

∫
(0,∞)

(e−βz − 1 + βz1{0<z<1}) Π(dz), β ∈ R,

where c ∈ R, σ ≥ 0 and Π is a measure on (0,∞) such that∫
(0,∞)

(1 ∧ z2)Π(dz) <∞.(2.1)
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Here Px is the conditional probability where X0 = x ∈ R and Ex is its expectation. It is well-known that ψ is zero
at the origin, convex on R+ and has a right-continuous inverse:

Φ(q) := sup{λ ≥ 0 : ψ(λ) = q}, q ≥ 0.

In particular, when ∫
(0,∞)

(1 ∧ z) Π(dz) <∞,(2.2)

we can rewrite

ψ(β) = µβ +
1

2
σ2β2 +

∫
(0,∞)

(e−βz − 1) Π(dz), β ∈ R

where

µ := c+

∫
(0,1)

zΠ(dz).

The process has paths of bounded variation if and only if σ = 0 and (2.2) holds. It is also assumed that X is not a
negative subordinator (decreasing a.s.). Namely, we require µ to be strictly positive if σ = 0 and (2.2) holds.

Let F be the filtration generated by X and S be a set of F-stopping times. We shall consider a general optimal
stopping problem of the form:

u(x) := sup
τ∈S

Ex
[
e−qτg(Xτ ) +

∫ τ

0
e−qth(Xt)dt

]
, x ∈ R(2.3)

for some discount factor q > 0 and locally-bounded measurable functions g, h : R 7→ R which represent, respec-
tively, the payoff received at a given stopping time τ and the running reward up to τ .

Typically, its optimal stopping time is given by the first down-crossing time of the form

τA := inf {t > 0 : Xt ≤ A} , A ∈ R.(2.4)

Let us denote the corresponding expected payoff by

uA(x) := Ex
[
e−qτAg(XτA) +

∫ τA

0
e−qth(Xt)dt

]
, x, A ∈ R,

which can be decomposed into

uA(x) =

{
Γ1(x;A) + Γ2(x;A) + Γ3(x;A), x > A,

g(x), x ≤ A,

where, for every x > A,

Γ1(x;A) := g(A)Ex
[
e−qτA

]
,

Γ2(x;A) := Ex
[
e−qτA(g(XτA)− g(A))1{XτA<A, τA<∞}

]
,

Γ3(x;A) := Ex
[∫ τA

0
e−qth(Xt)dt

]
.

(2.5)

Shortly below, we express each term via the scale function.



4 M. EGAMI AND K. YAMAZAKI

Remark 2.1. This paper does not consider the first up-crossing time defined by τ+
B := inf {t > 0 : Xt ≥ B}

because, for the spectrally negative Lévy case, the process always creeps upward (g(Xτ+B
) = g(B) a.s. on {τ+

B <

∞}), and the expression of the expected value is much simplified. We focus on a more interesting and challenging
case where the optimal stopping time is conjectured to be a first down-crossing time.

2.1. Scale functions. Associated with every spectrally negative Lévy process, there exists a (q-)scale function

W (q) : R 7→ R; q ≥ 0,

that is continuous and strictly increasing on [0,∞) and is uniquely determined by∫ ∞
0

e−βxW (q)(x)dx =
1

ψ(β)− q
, β > Φ(q).

Fix a > x > 0. If τ+
a is the first time the process goes above a and τ0 is the first time it goes below zero as a

special case of (2.4), then we have

Ex
[
e−qτ

+
a 1{τ+a <τ0, τ+a <∞}

]
=
W (q)(x)

W (q)(a)
and Ex

[
e−qτ01{τ+a >τ0, τ0<∞}

]
= Z(q)(x)− Z(q)(a)

W (q)(x)

W (q)(a)
,

where

Z(q)(x) := 1 + q

∫ x

0
W (q)(y)dy, x ∈ R.

Here we have

(2.6) W (q)(x) = 0 on (−∞, 0) and Z(q)(x) = 1 on (−∞, 0].

We also have

Ex
[
e−qτ0

]
= Z(q)(x)− q

Φ(q)
W (q)(x), x > 0.(2.7)

In particular, W (q) is continuously differentiable on (0,∞) if Π does not have atoms and W (q) is twice-
differentiable on (0,∞) if σ > 0; see, e.g., [11]. Throughout this paper, we assume the former.

Assumption 2.1. We assume that Π does not have atoms.

Fix q > 0. The scale function increases exponentially;

W (q)(x) ∼ eΦ(q)x

ψ′(Φ(q))
as x ↑ ∞.(2.8)

There exists a (scaled) version of the scale function WΦ(q) = {WΦ(q)(x);x ∈ R} that satisfies

WΦ(q)(x) = e−Φ(q)xW (q)(x), x ∈ R(2.9)

and ∫ ∞
0

e−βxWΦ(q)(x)dx =
1

ψ(β + Φ(q))− q
, β > 0.

Moreover WΦ(q)(x) is increasing, and as is clear from (2.8),

WΦ(q)(x) ↑ 1

ψ′(Φ(q))
as x ↑ ∞.(2.10)
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Regarding its behavior in the neighborhood of zero, it is known that

W (q)(0) =

{
0, unbounded variation
1
µ , bounded variation

}
and W (q)′(0+) =


2
σ2 , σ > 0

∞, σ = 0 and Π(0,∞) =∞
q+Π(0,∞)

µ2
, compound Poisson

 ;

(2.11)

see Lemmas 4.3-4.4 of [23].
For a comprehensive account of the scale function, see [8, 9, 21, 23]. See [16, 31] for numerical methods for

computing the scale function.

2.2. Expressing the expected payoff using the scale function. We now express (2.5) in terms of the scale func-
tion. For the rest of the paper, because q > 0, we must have Φ(q) > 0.

First, the following is immediate by (2.7).

Lemma 2.1. For every x > A, we have

Γ1(x;A) = g(A)

[
Z(q)(x−A)− q

Φ(q)
W (q)(x−A)

]
.

For Γ2 and Γ3, we use the potential measure written in terms of the scale function. By using Theorem 1 of [9]
(see also [18, 30]), we have, for every B ∈ B(R) and a > x > A,

Ex
[∫ τA∧τ+a

0
e−qt1{Xt∈B}dt

]
=

∫
B∩[A,∞)

[
W (q)(x−A)W (q)(a− y)

W (q)(a−A)
− 1{x≥y}W

(q)(x− y)

]
dy.

By taking a ↑ ∞ via the dominated convergence theorem, we can obtain Γ3(x;A) in (2.5). For the problem to be
well-defined, we assume throughout the paper the following so that Γ3 is finite. For a complete proof of Lemma
2.2 below, see [17].

Assumption 2.2. We assume that
∫∞

0 e−Φ(q)y|h(y)|dy <∞.

Lemma 2.2. For all x > A, we have

Γ3(x;A) = W (q)(x−A)

∫ ∞
0

e−Φ(q)yh(y +A)dy −
∫ x

A
W (q)(x− y)h(y)dy.

Lemma 2.2 together with the compensation formula shows the following.

Lemma 2.3. For all x > A, we have

Γ2(x;A) =

∫ ∞
0

Π(du)

[
W (q)(x−A)

∫ u

0
e−Φ(q)y(g(y +A− u)− g(A))dy

−
∫ u∧(x−A)

0
W (q)(x− z −A)(g(z +A− u)− g(A))dz

]
.
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Proof. Let N(·, ·) be the Poisson random measure associated with −X and Xt := min0≤s≤tXs for all t ≥ 0. By
the compensation formula (see, e.g., [21]), we have

Γ2(x;A) = Ex
[∫ ∞

0

∫ ∞
0

N(dt,du)e−qt(g(Xt− − u)− g(A))1{Xt−−u≤A, Xt−>A}

]
= Ex

[∫ ∞
0

e−qtdt

∫ ∞
0

Π(du)(g(Xt− − u)− g(A))1{Xt−−u≤A, Xt−>A}

]
=

∫ ∞
0

Π(du)Ex
[∫ ∞

0
e−qt(g(Xt− − u)− g(A))1{Xt−−u≤A, Xt−>A}dt

]
=

∫ ∞
0

Π(du)Ex
[∫ τA

0
e−qt(g(Xt− − u)− g(A))1{Xt−≤A+u}dt

]
.

By setting h(y) ≡ (g(y − u) − g(A))1{y≤A+u} or equivalently h(y + A) ≡ (g(y + A − u) − g(A))1{y≤u} in
Lemma 2.2,

Ex
[∫ τA

0
e−qt(g(Xt− − u)− g(A))1{Xt−≤A+u}dt

]
= W (q)(x−A)

∫ u

0
e−Φ(q)y(g(y +A− u)− g(A))dy −

∫ x

A
W (q)(x− y)(g(y − u)− g(A))1{y≤A+u}dy

= W (q)(x−A)

∫ u

0
e−Φ(q)y(g(y +A− u)− g(A))dy −

∫ u∧(x−A)

0
W (q)(x− z −A)(g(z +A− u)− g(A))dz.

By substituting this, we have the claim. �

In the next section, we differentiate and take limits on Γi for 1 ≤ i ≤ 3. In particular, Γ2 contains an integral with
respect to a (possibly infinite) Lévy measure. We show here that it can be simplified upon some mild integrability
conditions. Define, for every A ∈ R,

ρ
(q)
g,A :=

∫ ∞
0

Π(du)

∫ u

0
e−Φ(q)z(g(z +A− u)− g(A))dz

≡
∫ ∞

0
Π(du)

∫ u+A

A
e−Φ(q)(y−A)(g(y − u)− g(A))dy,

ρ
(q)
g,A :=

∫ ∞
0

Π(du)

∫ u

0
e−Φ(q)z|g(z +A− u)− g(A)|dz

≡
∫ ∞

0
Π(du)

∫ u+A

A
e−Φ(q)(y−A)|g(y − u)− g(A)|dy.

(2.12)

Lemma 2.4. Fix A ∈ R. Suppose

(1) g is C2 in some neighborhood of A and
(2) g satisfies ∫ ∞

1
Π(du) max

A−u≤ζ≤A
|g(ζ)− g(A)| <∞,(2.13)

then ρ(q)
g,A <∞.

Proof. See Appendix A.1. �
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For every x > A, we also define

ϕ
(q)
g,A(x) :=

∫ ∞
0

Π(du)

∫ u∧(x−A)

0
W (q)(x− z −A)(g(z +A− u)− g(A))dz,

ϕ
(q)
g,A(x) :=

∫ ∞
0

Π(du)

∫ u∧(x−A)

0
W (q)(x− z −A)|g(z +A− u)− g(A)|dz.

By (2.9)-(2.10),

ϕ
(q)
g,A(x) = eΦ(q)(x−A)

∫ ∞
0

Π(du)

∫ u∧(x−A)

0
e−Φ(q)zWΦ(q)(x− z −A)|g(z +A− u)− g(A)|dz

≤ eΦ(q)(x−A)
ρ

(q)
g,A

ψ′(Φ(q))
,

(2.14)

and hence the finiteness of ρ(q)
g,A also implies that of ϕ(q)

g,A(x) for any x > A.
Given (1)-(2) of Lemma 2.4 for a given A, we can hence split the integral and

Γ2(x;A) = W (q)(x−A)ρ
(q)
g,A − ϕ

(q)
g,A(x), x > A.(2.15)

Here we can also write

W (q)(x−A)ρ
(q)
g,A = WΦ(q)(x−A)eΦ(q)x

∫ ∞
0

Π(du)

∫ u+A

A
e−Φ(q)y(g(y − u)− g(A))dy,

ϕ
(q)
g,A(x) =

∫ ∞
0

Π(du)

∫ (u+A)∧x

A
W (q)(x− z)(g(z − u)− g(A))dz.

(2.16)

3. FIRST-ORDER CONDITION AND CONTINUOUS AND SMOOTH FIT

The most common way of choosing the candidate threshold level is the continuous and smooth fit principle.
Define

uA(A+) := lim
x↓A

uA(x) and u′A(A+) := lim
x↓A

u′A(x), A ∈ R,

if these limits exist. The continuous and smooth fit chooses A such that uA(A+) = g(A) and u′A(A+) = g′(A),
respectively. Alternatively, one can differentiate uA with respect to A and obtain the first-order condition.

In this section, we pursue the candidate threshold level A∗ in both ways. We first obtain, for a general case,
the first-derivative ∂uA(x)/∂A and A that makes it vanish, and then the continuous fit condition for the case X is
of bounded variation and the smooth fit condition for the case X has a diffusion component (σ > 0). We further
discuss the equivalence of these conditions and how to obtain optimal strategies.

3.1. First-order condition. We shall obtain ∂uA(x)/∂A for x > A that satisfies (1)-(2) of Lemma 2.4. Let

Ψ(A) := − q

Φ(q)
g(A) + ρ

(q)
g,A +

∫ ∞
0

e−Φ(q)yh(y +A)dy, A ∈ R.

Proposition 3.1 (derivative of uA with respect to A). For given x > A, suppose (1)-(2) of Lemma 2.4 hold and∫ ∞
1

Π(du) sup
0≤ξ≤δ

|g(A+ ξ)− g(A+ ξ − u)| <∞,(3.1)
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for some δ > 0. Then, we have

∂

∂A
uA(x) = −Θ(q)(x−A)

(
Ψ(A)− σ2

2
g′(A)

)
,

where

Θ(q)(y) := eΦ(q)yW ′Φ(q)(y), y > 0.

BecauseWΦ(q) is increasing, Θ(q) is positive (see also [23] for an interpretation of Θ(q) as the resolvent measure
of the ascending ladder height process of X) and hence

Ψ(A)− σ2

2
g′(A) ≤ (≥)0 =⇒ ∂

∂A
uA(x) ≥ (≤)0 ∀x > A.(3.2)

If there exists A∗ such that

Ψ(A∗)− σ2

2
g′(A∗) = 0,(3.3)

then the stopping time τA∗ naturally becomes a reasonable candidate for the optimal stopping time.
In order to show Proposition 3.1 above, we obtain the derivatives of Γi for 1 ≤ i ≤ 3 with respect to A for

any x > A. By applying straightforward differentiation in Lemma 2.1 and because W (q)′(x) = Φ(q)WΦ(q)(x) +

Θ(q)(x),

∂

∂A
Γ1(x;A) = g′(A)

[
Z(q)(x−A)− q

Φ(q)
W (q)(x−A)

]
+ g(A)

q

Φ(q)
Θ(q)(x−A).(3.4)

For Γ2, we first take the derivatives of (2.16) with respect to A.

Lemma 3.1. Fix x > A. Under the assumptions in Proposition 3.1,

(3.5)
∂

∂A

∫ ∞
0

Π(du)

∫ u+A

A
e−Φ(q)y[g(y − u)− g(A)]dy

= e−Φ(q)A

∫ ∞
0

Π(du)
[
g(A)− g(A− u)− 1− e−Φ(q)u

Φ(q)
g′(A)

]
,

and

∂

∂A
ϕ

(q)
g,A(x) =

∫ ∞
0

Π(du)
[
W (q)(x−A)(g(A)− g(A− u))− g′(A)

∫ (u+A)∧x

A
W (q)(x− z)dz

]
.(3.6)

Proof. See Appendix A.2. �

By applying Lemma 3.1 in (2.15)-(2.16), the derivative of Γ2 with respect to A is immediately obtained.

Lemma 3.2. Fix x > A. Under the assumptions in Proposition 3.1,

∂

∂A
Γ2(x;A) = −W ′Φ(q)(x−A)eΦ(q)x

∫ ∞
0

Π(du)

∫ u+A

A
e−Φ(q)y(g(y − u)− g(A))dy

+ g′(A)

∫ ∞
0

Π(du)
(∫ (u+A)∧x

A
W (q)(x− z)dz − 1− e−Φ(q)u

Φ(q)
W (q)(x−A)

)
.

For Γ3, as in the proof of Lemma 4.4 of [17], we have the following. Although the continuity of h is assumed
throughout in [17], it is not required in the following lemma; this is clear from the proof of Lemma 4.4 of [17].
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Lemma 3.3. For every x > A,

∂

∂A
Γ3(x;A) = −Θ(q)(x−A)

∫ ∞
0

e−Φ(q)yh(y +A).

We are now ready to prove Proposition 3.1.

Proof of Proposition 3.1. By combining (3.4) and Lemmas 3.2-3.3, we obtain

∂

∂A
uA(x) = −Θ(q)(x−A)Ψ(A) + g′(A)Q(x;A)

where

Q(x;A) := Z(q)(x−A)− q

Φ(q)
W (q)(x−A)

−
∫ ∞

0
Π(du)

(
W (q)(x−A)

1− e−Φ(q)u

Φ(q)
−
∫ (u+A)∧x

A
W (q)(x− z)dz

)
, x > A.

By Lemmas 2.1 and modifying Lemma 2.3, we can also write

Q(x;A) = Ex
[
e−qτA

]
− Ex

[
e−qτA1{XτA<A, τA<∞}

]
= Ex

[
e−qτA1{XτA=A, τA<∞}

]
, x > A.

A spectrally negative Lévy process creeps downward if and only if there is a Gaussian component, i.e., Px {XτA = A} >
0 for any x > A if and only if σ > 0; see [21] Exercise 7.6. Hence

σ > 0⇐⇒ Q(x;A) > 0, ∀x > A.

This proves the desired result for the case σ = 0. For the case σ > 0, as in [10, 28], we can also write

Q(x;A) =
σ2

2

(
W (q)′(x−A)− Φ(q)W (q)(x−A)

)
=
σ2

2
Θ(q)(x−A),

and hence it also holds when σ > 0 as well. �

3.2. Continuous and smooth fit. We now pursue A∗ such that uA∗(A∗+) = g(A∗) and u′A∗(A
∗+) = g′(A∗) for

the cases

(1) X is of bounded variation, and
(2) σ > 0,

respectively. We exclude the case X is of unbounded variation with σ = 0 (in this case, W (q)′(0+) = ∞ by
(2.11) and hence the interchange of limits over integrals we conduct below may not be valid). However, this can
be alleviated and the results hold generally for all spectrally negative Lévy processes when g is a constant in a
neighborhood of A∗. Examples include [17] where g(x) = 0 on (0,∞) and [29] where g(x) = 1 on (−∞, 0] and
g(x) = 2 on (0,∞); see Section 4.

For continuous fit, we need to obtain

Γ1(A+;A) := lim
x↓A

Γ1(x;A), Γ2(A+;A) := lim
x↓A

Γ2(x;A), and Γ3(A+;A) := lim
x↓A

Γ3(x;A)

if these limits exist. Define also ϕ(q)
g,A(A+) := limx↓A ϕ

(q)
g,A(x), if it exists. It is easy to see that

Γ1(A+;A) = g(A)

(
1− q

Φ(q)
W (q)(0)

)
and Γ3(A+;A) = W (q)(0)

∫ ∞
0

e−Φ(q)yh(y +A)dy.(3.7)
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The result for Γ2 is immediate by the dominated convergence theorem thanks to Lemma 2.4 and (2.14)-(2.15).

Lemma 3.4. Given (1)-(2) of Lemma 2.4 for a given A ∈ R, we have

(1) ϕ(q)
g,A(A+) = 0,

(2) Γ2(A+;A) = W (q)(0)ρ
(q)
g,A.

Now Lemma 3.4 and (3.7) show

uA(A+) = g(A) +W (q)(0)Ψ(A).(3.8)

This together with (2.11) shows the following.

Proposition 3.2 (Continuous Fit). Fix A ∈ R and suppose (1)-(2) of Lemma 2.4 hold.

(1) If X is of bounded variation, the continuous fit condition uA(A+) = g(A) holds if and only if

Ψ(A) = 0.

(2) If X is of unbounded variation (including the case σ = 0), it is automatically satisfied.

For the case X is of unbounded variation with σ > 0, we shall pursue smooth fit condition at A ∈ R. The
following lemma says in this case that the derivative can go into the integral sign and we can further interchange
the limit.

Lemma 3.5. Fix A ∈ R. If σ > 0 and suppose (1)-(2) of Lemma 2.4 hold, then

ϕ
(q)′

g,A(x) =

∫ ∞
0

Π(du)

∫ u∧(x−A)

0
W (q)′(x− z −A)[g(z +A− u)− g(A)]dz, x > A,(3.9)

and

ϕ
(q)′

g,A(A+) = 0.(3.10)

Proof. See Appendix A.3. �

Remark 3.1. In the case of unbounded variation with σ = 0, it is expected that (3.9) holds but (3.10) does not.
This is because W (q)′(0+) =∞ and the limit cannot go into the integral.

We are now ready to obtain Γ′i(A+;A) for 1 ≤ i ≤ 3.

Lemma 3.6. Fix A ∈ R. Suppose σ > 0 and (1)-(2) of Lemma 2.4 hold. Then,

(1) Γ′1(A+, A) = −W (q)′(0+)g(A)q/Φ(q),
(2) Γ′2(A+;A) = W (q)′(0+)ρ

(q)
g,A,

(3) Γ′3(A+;A) = W (q)′(0+)
∫∞

0 e−Φ(q)yh(y +A)dy.

Proof. (1) It is immediate by Lemma 2.1. (2) By (2.15),

Γ′2(x;A) = W (q)′(x−A)ρ
(q)
g,A − ϕ

(q)′

g,A(x), x > A.
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By taking x ↓ A via (3.10), we have the claim. (3) Using (2.6) in particular W (q)(0) = 0, we have

Γ′3(A+;A) = lim
x↓A

[
W (q)′(x−A)

∫ ∞
0

e−Φ(q)yh(y +A)dy −
∫ x

A
W (q)′(x− y)h(y)dy

]
= W (q)′(0+)

∫ ∞
0

e−Φ(q)yh(y +A)dy.

�

By the lemma above, we obtain

u′A(A+) = W (q)′(0+)Ψ(A)

or equivalently, by virtue of (2.11), the smooth fit condition at A∗ is equivalent to (3.3).

Proposition 3.3 (Smooth Fit). Fix A ∈ R. Suppose σ > 0 and (1)-(2) of Lemma 2.4 hold. Then, the smooth fit
condition u′A(A+) = g′(A) holds if and only if

Ψ(A) =
σ2

2
g′(A).

We summarize the results obtained in Propositions 3.2-3.3 in Table 1. It is clear from Proposition 3.1 and Table

Continuous-fit Smooth-fit
bounded var. Ψ(A) = 0 N/A

σ > 0 Automatically satisfied Ψ(A) = σ2g′(A)/2

TABLE 1. Summary of Continuous- and Smooth-fit Conditions.

1 that the first-order condition and the continuous/smooth fit condition are indeed equivalent.

3.3. Obtaining optimal solution. After choosing the candidate threshold level A∗, the verification of optimality
of τA∗ requires

(i) uA∗(x) ≥ g(x) for all x ∈ R,
(ii) (L − q)uA∗(x) + h(x) = 0 for all x ∈ (A∗,∞),

(iii) (L − q)uA∗(x) + h(x) < 0 for all x ∈ (−∞, A∗);

see e.g., [27]. Here L is the infinitesimal generator associated with the process X applied to sufficiently smooth
function f

Lf(x) = cf ′(x) +
1

2
σ2f ′′(x) +

∫ ∞
0

[
f(x− z)− f(x) + f ′(x)z1{0<z<1}

]
Π(dz).

As we shall show shortly below, the conditions (i)-(ii) can be obtained upon some condition. The proof of condition
(iii) unfortunately relies on the structure of the problem; in order to complement this, we give examples where the
optimality over all stopping times holds in the next section.

Lemma 3.7. Suppose A∗ satisfies (3.3), g is C2 on (A∗,∞) and

Ψ(A)− σ2

2
g′(A) > 0, A > A∗.(3.11)

Then (i) is satisfied.
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Proof. Because g(x) = uA∗(x) on (−∞, A∗], we only need to show (i) on (A∗,∞). For any x > A∗, we obtain
by (3.2) and (3.8) that

uA∗(x) ≥ lim
A↑x

uA(x) = g(x) +W (q)(0)Ψ(x).

For the unbounded variation case, because W (q)(0) = 0, the result is immediate. For the bounded variation case
(which necessarily means σ = 0), (3.11) implies Ψ(x) > 0 and hence the result is also immediate.

�

Regarding the condition (ii), the stochastic processes{
e−q(t∧τ

+
B∧τ0)W (q)(Xt∧τ+B∧τ0

); t ≥ 0
}

and
{
e−q(t∧τ

+
B∧τ0)Z(q)(Xt∧τ+B∧τ0

); t ≥ 0
}

for any B <∞ are martingales (see, e.g., [10]), and therefore

(L − q)W (q)(x) = (L − q)Z(q)(x) = 0, x > 0.(3.12)

Furthermore, integration by parts can be applied to obtain the following (see Section A.5 of [17] for a complete
proof).

Lemma 3.8 (Egami and Yamazaki [17]). We have

(L − q)
[∫ x

A
W (q)(x− y)h(y)dy

]
= h(x), x > A.

By Lemma 3.8, we obtain the following.

Proposition 3.4. For every x > A, we have (L − q)uA(x) + h(x) = 0.

Proof. Define f(x) := Ex [e−qτAg(XτA)]. Then for all x > A, we have by the strong Markov property,

Ex
[
e−qτAg(XτA)|Ft∧τA

]
= e−q(t∧τA)f(Xt∧τA).

Taking expectation on both sides we obtain f(x) = Ex [e−qτAg(XτA)] = Ex
[
e−q(t∧τA)f(Xt∧τA)

]
. Hence{

e−q(t∧τA)f(Xt∧τA); t ≥ 0
}

is a martingale and therefore (L − q)f(x) = (L − q)(Γ1(x;A) + Γ2(x;A)) = 0

on (A,∞); see also the appendix of [10] for a more rigorous proof. On the other hand, Lemma 3.8 and (3.12) give

(L − q)Γ3(x;A) = −(L − q)
[∫ x

A
W (q)(x− y)h(y)dy

]
= −h(x).

Summing up these, we have the claim. �

4. EXAMPLES

In this section, we give examples to illustrate how we can apply the results obtained in the previous sections. We
first consider, as a warm-up, a classical example of the optimal stopping problem known as the perpetual American
put option pricing. We then extend Egami and Yamazaki [17] and obtain analytical solutions.
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4.1. Perpetual American put option. The problem of pricing a perpetual American put option reduces to (2.3)
with g(x) = K − ex and h ≡ 0. Here, eX models the stock price and K > 0 is the strike price; the option holder
chooses a time to exercise so as to maximize the expected payoff. This classical problem is known to have an
optimal stopping time of threshold type (see [26]). In particular, for the spectrally negative case, it has been shown
by [3] that the optimal threshold level is given by

A∗ = log
(
K

q

Φ(q)

Φ(q)− 1

q − ψ(1)

)
.(4.1)

We consider a more general case where h is any non-decreasing function and give a simple proof by directly
using the results obtained in the previous sections. Because

−g(A)
q

Φ(q)
+ ρ

(q)
g,A = − q

Φ(q)
(K − eA) +

∫ ∞
0

Π(du)

∫ u

0
e−Φ(q)z(eA − ez+A−u)dz

= − q

Φ(q)
K + eA

[ q

Φ(q)
+

∫ ∞
0

Π(du)
(1− e−Φ(q)u

Φ(q)
− e−u 1− e−(Φ(q)−1)u

Φ(q)− 1

)]
,

we obtain

Ψ(A)− σ2

2
g′(A) = − q

Φ(q)
K +

eA

Φ(q)
Mq +

∫ ∞
0

e−Φ(q)yh(y +A)dy(4.2)

where

Mq := q +
σ2

2
Φ(q) +

∫ ∞
0

Π(du)
[
(1− e−Φ(q)u)− e−u(1− e−(Φ(q)−1)u)

Φ(q)

Φ(q)− 1

]
.

Here, by the change of measure, Mq can be simplified.

Lemma 4.1. We have Mq = Φ(q)
Φ(q)−1(q − ψ(1)).

Proof. By the definition of ψ and Φ, we rewrite Mq as

q +
σ2

2
Φ(q) +

∫ ∞
0

Π(du)

[
(1− e−Φ(q)u − Φ(q)u1{u∈(0,1)})− e−u(1− e−(Φ(q)−1)u)

Φ(q)

Φ(q)− 1
+ Φ(q)u1{u∈(0,1)}

]
=
(
c−

∫ 1

0
u(e−u − 1)Π(du)

)
Φ(q) +

σ2

2
Φ(q)(Φ(q) + 1)

− Φ(q)

Φ(q)− 1

∫ ∞
0

Π(du)e−u
(

1− e−(Φ(q)−1)u + (Φ(q)− 1)u1{u∈(0,1)}

)
.

Define, as the Laplace exponent of X under P1 with the change of measure dP1
dP

∣∣∣
Ft

= exp(Xt − ψ(1)t), t ≥ 0,

ψ1(β) :=
(
σ2 + c−

∫ 1

0
u(e−u − 1)Π(du)

)
β +

1

2
σ2β2 +

∫ ∞
0

(e−βu − 1 + βu1{u∈(0,1)})e
−u Π(du).

Then, ψ1(Φ(q)− 1) = ψ(Φ(q))− ψ(1) = q − ψ(1); see page 215 of [21]. Hence simple algebra shows

Φ(q)

Φ(q)− 1
(q − ψ(1)) =

Φ(q)

Φ(q)− 1
ψ1(Φ(q)− 1) = Mq,

as desired. �
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It is clear that Mq > 0 and hence (4.2) is monotonically increasing in A. Therefore on condition that

lim
A↓−∞

[
Ψ(A)− σ2

2
g′(A)

]
= − q

Φ(q)
K + lim

A↓−∞

∫ ∞
0

e−Φ(q)yh(y +A)dy < 0,

there exists a unique A∗ such that (4.2) vanishes and by (3.2)

∂

∂A
uA(x) ≥ 0 ∀x > A⇐⇒ A ≤ A∗.

This shows that τA∗ is optimal among the set of all stopping times of threshold type. In particular, when h ≡ 0,
the optimal threshold A∗ reduces to (4.1). Because the optimal stopping time is known to be of threshold type by
[26], τA∗ is indeed the optimal stopping time.

4.2. Generalization of Egami and Yamazaki [17]. We now solve an extension to [17], where we obtained an
alarm system that determines when a bank needs to start enhancing its own capital ratio so as not to violate the
capital adequacy requirements. Here X models the bank’s net worth or equity capital allocated to its loan/credit
business. The problem is to strike the balance between minimizing the chance of violating the net capital require-
ment and the costs of premature undertaking (or the regret) measured, respectively, by

R(q)
x (τ) := Ex

[
e−qθ1{τ≥θ}

]
and H(q,h)

x (τ) := Ex
[
1{τ<∞}

∫ θ

τ
e−qth(Xt)dt

]
where h is positive, continuous and increasing and

θ := inf {t ≥ 0 : Xt ≤ 0}

denotes the capital requirement violation time. We want to obtain over the set of stopping times,

S := {τ stopping time : τ ≤ θ a.s.} ,(4.3)

an optimal stopping time that minimizes the linear combination of the two costs described above:

U (q,h)
x (τ, γ) := R(q)

x (τ) + γH(q,h)
x (τ),

for some γ > 0. By taking advantage of the property of S , the problem can be reduced to obtaining

inf
τ∈S

Ex
[
e−qτ1{Xτ≤0,τ<∞} +

∫ θ

τ
e−qth(Xt)dt

]
= −u(x) + Ex

[∫ θ

0
e−qth(Xt)dt

]
with

u(x) := sup
τ∈S

Ex
[
−e−qτ1{Xτ≤0,τ<∞} +

∫ τ

0
e−qth(Xt)dt

]
.

In other words, the problem reduces to (2.3) with

g(x) =

0, x > 0,

−1, x ≤ 0,

and a special set of stopping times defined in (4.3). Egami and Yamazaki [17] solved for double exponential jump
diffusion [19] and for a general spectrally negative Lévy process.

We shall consider its extension for a more general g (or more general R(q)
x (τ) := −Ex

[
e−qθg(Xθ)1{τ≥θ}

]
) by

assuming the following.
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Specification 4.1. (1) g is negative and increasing on (−∞, 0] (and zero on (0,∞));
(2) h is positive, continuous and increasing.

The first assumption on g means that the penalty |g(Xθ)| increases as the overshoot |Xθ| increases. The second
assumption on h is the same as in [17]; if a bank has a higher capital value, then it naturally has better access to
high quality assets.

In this problem, it can be conjectured that there exists a threshold level A∗ such that τA∗ is optimal. Here we
can rewrite (2.12) for all A > 0

ρ
(q)
g,A =

∫ ∞
A

Π(du)

∫ u−A

0
e−Φ(q)yg(y +A− u)dy,

ρ
(q)
g,A =

∫ ∞
A

Π(du)

∫ u−A

0
e−Φ(q)y|g(y +A− u)|dy.

This avoids the integration of Π in the neighborhood of zero and hence Lemma 3.5 also holds for the case of
unbounded variation with σ = 0. Now, as a special case of Propositions 3.2-3.3 (noticing g(A) = g′(A) = 0 for
all A > 0), we obtain the following.

Lemma 4.2 (Continuous and Smooth Fit). Suppose (1)-(2) of Lemma 2.4 for a given A > 0.

continuous fit: If X is of bounded variation, the continuous fit condition u(A) = 0 holds if and only if

Ψ(A) = 0.(4.4)

If X is of unbounded variation, it is automatically satisfied.
smooth fit: If X is of unbounded variation, the smooth fit condition u′(A) = 0 holds if and only if (4.4)

holds.

Continuous-fit Smooth-fit
(i) bounded var. Ψ(A) = 0 N/A

(ii) unbounded var. Automatically satisfied Ψ(A) = 0

TABLE 2. Summary of Continuous- and Smooth-fit Conditions.

Under Specification 4.1, there exists at most one A∗ > 0 that satisfies (4.4) because

(4.5) Ψ′(A) =

∫ ∞
0

e−Φ(q)yh′(y +A)dy

+

∫ ∞
A

Π(du)

∫ u−A

0
e−Φ(q)yg′(y +A− u)dy −

∫ ∞
A

Π(du)e−Φ(q)(u−A)g(0−) > 0.

Verification of optimality: We let A∗ be the unique root of Ψ(A) = 0 if it exists and set it zero otherwise. By
Proposition 3.4, we only need to show

(a) uA∗(x) ≥ g(x) for all x > 0;
(b) (L − q)uA∗(x) + h(x) ≤ 0 for all x ∈ (0, A∗) when A∗ > 0.
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By (4.5) we have (3.11) and hence Lemma 3.7 shows (a). We can also show (b), as given immediately below,
by the monotonicity assumptions on g and h.

Lemma 4.3. If A∗ > 0, we have (L − q)g(x) + h(x) ≤ 0 for every x ∈ (0, A∗).

Proof. Because g(x) = g′(x) = 0 for every x > 0,

(L − q)g(x) + h(x) =

∫ ∞
x

Π(du)g(x− u) + h(x), x ∈ (0, A∗).(4.6)

We shall show that this is negative. Because A∗ > 0, we must have∫ ∞
0

e−Φ(q)yh(y +A∗)dy +

∫ ∞
A∗

Π(du)

∫ u−A∗

0
e−Φ(q)yg(y +A∗ − u)dy = 0,

and hence

0 ≥ h(x)

∫ ∞
0

e−Φ(q)ydy +

∫ ∞
A∗

Π(du)g(x− u)

∫ u−A∗

0
e−Φ(q)ydy

≥ h(x)

∫ ∞
0

e−Φ(q)ydy +

∫ ∞
A∗

Π(du)g(x− u)

∫ ∞
0

e−Φ(q)ydy

≥ h(x)

∫ ∞
0

e−Φ(q)ydy +

∫ ∞
x

Π(du)g(x− u)

∫ ∞
0

e−Φ(q)ydy

=
(
h(x) +

∫ ∞
x

Π(du)g(x− u)
)∫ ∞

0
e−Φ(q)ydy,

where the first inequality holds because g and h are increasing and x < A∗, the second holds because g is nonpos-
itive, and the third holds because x < A∗ and g is nonpositive. This together with (4.6) shows the result. �

The optimality of τA∗ holds thanks to (a)-(b). For the rest of the proof, we refer the reader to the proof of
Proposition 4.1 in [17].

Proposition 4.1. If A∗ > 0, then τA∗ is the optimal stopping time and the value function is given by uA∗(x) for
every x > 0. If A∗ = 0, then the value function is given by limA↓0 uA(x) for every x > 0.

5. CONCLUDING REMARKS

We have discussed the optimal stopping problem for spectrally negative Lévy processes. By expressing the
expected payoff via the scale function, we achieved the first-order condition as well as the continuous/smooth
fit condition and showed their equivalence. The results obtained here can be applied to a wide range of optimal
stopping problems for spectrally negative Lévy processes. As examples, we gave a short proof for the perpetual
American option pricing problem and solved an extension to Egami and Yamazaki [17].

For future research, it would be interesting to pursue similar results for optimal stopping games. Typically,
the equilibrium strategies are given by stopping times of threshold type as in [6, 7, 15] . Similarly to the results
obtained in this paper, the expected payoff admits expressions in terms of the scale function and hence the first-
order condition and the continuous/smooth fit can be obtained analytically. Another direction is the extension to
a general Lévy process with both positive and negative jumps. This can be obtained in terms of the Wiener-Hopf
factor alternatively to the scale function. Finally, the results can be extended to a number of variants of optimal
stopping such as optimal switching, impulse control and multiple stopping.
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APPENDIX A. PROOFS

A.1. Proof of Lemma 2.4. By the assumption (1) and Taylor expansion, we can take 0 < ε < 1 such that, for any
0 < z < u < ε and %A,ε := max0≤ξ≤ε |g′′(A− ξ)| <∞,

|g(A− u+ z)− g(A)| ≤ (u− z)|g′(A)|+ 1

2
(u− z)2%A,ε ≤ u|g′(A)|+ 1

2
u2%A,ε.(A.1)

Therefore, by (2.1),∫ ε

0
Π(du)

∫ u

0
e−Φ(q)z|g(z +A− u)− g(A)|dz ≤

∫ ε

0
Π(du)

(
u2|g′(A)|+ 1

2
u3%A,ε

)
<∞.

On the other hand, by (2.13),∫ ∞
ε

Π(du)

∫ u

0
e−Φ(q)z|g(z +A− u)− g(A)|dz ≤ 1

Φ(q)

∫ ∞
ε

Π(du) max
A−u≤ζ≤A

|g(ζ)− g(A)| <∞.

Combining the above, the proof is complete.

A.2. Proof of Lemma 3.1. Proof of (3.5): Define %(A) :=
∫∞

0 Π(du)q(A;u) with

q(A;u) :=

∫ u+A

A
e−Φ(q)y[g(y − u)− g(A)]dy, u ≥ 0.

By assumption, we can choose 0 < ε < 1 such that g is C2 on [A− ε, A+ ε].
We choose 0 < δ < ε that satisfies (3.1) and fix 0 < c < δ. By the mean value theorem, there exists ξ ∈ (0, c)

such that

q′(A+ ξ;u) =
q(A+ c;u)− q(A;u)

c
.

Because, for every z ∈ (A,A+ c), we have

q′(z;u) = e−Φ(q)z
(
g(z)− g(z − u)− 1− e−Φ(q)u

Φ(q)
g′(z)

)
,(A.2)

the Taylor expansion implies that, for every 0 < u < δ,

|q′(A+ ξ;u)| ≤ e−Φ(q)(A+ξ)u
2

2
(Φ(q) + 1) max

0≤ζ≤u
|g′′(A+ ξ − ζ)| ≤ e−Φ(q)Au

2

2
(Φ(q) + 1) max

A−δ≤ζ≤A+δ
|g′′(ζ)|,

or uniformly in c ∈ (0, δ)

|q(A+ c;u)− q(A;u)|
c

≤ e−Φ(q)Au
2

2
(Φ(q) + 1) max

A−δ≤ζ≤A+δ
|g′′(ζ)|.

Hence uniformly in c ∈ (0, δ) by (2.1)∫ δ

0
Π(du)

|q(A+ c;u)− q(A;u)|
c

≤ e−Φ(q)A max
A−δ≤ζ≤A+δ

|g′′(ζ)|Φ(q) + 1

2

∫ δ

0
u2Π(du) <∞.

On the other hand, by (A.2),∫ ∞
δ

Π(du)
|q(A+ c;u)− q(A;u)|

c

≤ e−Φ(q)A

(
max

0≤ξ≤δ

|g′(A+ ξ)|
Φ(q)

Π(δ,∞) +

∫ ∞
δ

Π(du) max
0≤ξ≤δ

|(g(A+ ξ)− g(A+ ξ − u)|
)
,
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which is finite by (3.1) and how δ is chosen.
This allows us to apply the dominated convergence theorem, and we obtain

lim
c↓0

%(A+ c)− %(A)

c
=

∫ ∞
0

Π(du) lim
c↓0

q(A+ c;u)− q(A;u)

c

=

∫ ∞
0

Π(du)q′(A;u) = e−Φ(q)A

∫ ∞
0

Π(du)
(
g(A)− g(A− u)− g′(A)

1− e−Φ(q)A

Φ(q)

)
.

The proof for the left-derivative is similar, and this completes the proof of (3.5).
Proof of (3.6): Define

q̃(z;u, x) :=

∫ (u+z)∧x

z
W (q)(x− y)[g(y − u)− g(z)]dy, z ∈ R and u > 0.(A.3)

Then, by (2.16), we have ϕ(q)
g,A(x) =

∫∞
0 Π(du)q̃(A;u, x). We use the same 0 < δ < ε as in the proof of (3.5)

above and fix c and ε such that

0 < c < δ ∧ x−A
4

and 0 < ε :=
[1

2
(x−A)−

(
δ ∧ x−A

4

)]
∧ δ.

It is then clear that 0 < c < ε ≤ δ. We shall split

(A.4)
∫ ∞

0
Π(du)

|q̃(A+ c;u, x)− q̃(A;u, x)|
c

=

∫ ε

0
Π(du)

|q̃(A+ c;u, x)− q̃(A;u, x)|
c

+

∫ ∞
ε

Π(du)
|q̃(A+ c;u, x)− q̃(A;u, x)|

c
,

and show that these two terms on the right-hand side are bounded in c on (0, δ ∧ x−A
4 ).

For every fixed 0 < u < ε, our assumptions imply that q̃(·;u, x) is C2 on (A,A + c). By the mean value
theorem, there exists ξ ∈ (0, c) such that

q̃′(A+ ξ;u, x) =
q̃(A+ c;u, x)− q̃(A;u, x)

c
.

Given z at which g is differentiable and also satisfying u+ z < x, differentiating (A.3) obtains

q̃′(z;u, x) = W (q)(x− z)(g(z)− g(z − u))− g′(z)
∫ u+z

z
W (q)(x− y)dy.
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Because x− u−A− ξ > x−A
4 > 0 (or u+ (A+ ξ) < x) and g is differentiable at A+ ξ,

|q̃(A+ c;u, x)− q̃(A;u, x)|
c

= |q̃′(A+ ξ;u, x)|

=

∣∣∣∣W (q)(x−A− ξ)[g(A+ ξ)− g(A+ ξ − u)]− g′(A+ ξ)

∫ u+A+ξ

A+ξ
W (q)(x− y)dy

∣∣∣∣
≤W (q)(x−A− ξ)

∣∣g(A+ ξ)− g(A+ ξ − u)− ug′(A+ ξ)
∣∣

+

∣∣∣∣g′(A+ ξ)

∫ u+A+ξ

A+ξ
(W (q)(x−A− ξ)−W (q)(x− y))dy

∣∣∣∣
≤W (q)(x−A)

∣∣g(A+ ξ)− g(A+ ξ − u)− ug′(A+ ξ)
∣∣

+ u|g′(A+ ξ)|
∣∣∣W (q)(x−A− ξ)−W (q)(x− u−A− ξ)

∣∣∣
≤ f1(A;u, x) + f2(A;u, x)

where

f1(A;u, x) := W (q)(x−A) max
0≤ζ≤δ∧x−A

4

|g(A+ ζ)− g(A+ ζ − u)− ug′(A+ ζ)|,

f2(A;u, x) := u max
0≤ζ≤δ∧x−A

4

|g′(A+ ζ)| max
0≤ζ≤δ∧x−A

4

∣∣∣W (q)(x−A− ζ)−W (q)(x− u−A− ζ)
∣∣∣ .

First,
∫ ε

0 Π(du)f1(A;u, x) is finite because, for every u ≤ ε, we have u ≤ δ and

max
0≤ζ≤δ∧x−A

4

|g(A+ ζ)− g(A+ ζ − u)− ug′(A+ ζ)| ≤ u2

2
max

A−δ≤ζ≤A+δ
|g′′(ζ)|,

which is Π-integrable over (0, ε) by (2.1). On the other hand, by (2.10) and because 0 ≤ ζ ≤ δ ∧ x−A
4 implies

x− u−A− ζ > x−A
4 > 0, we have∣∣∣W (q)(x−A− ζ)−W (q)(x− u−A− ζ)

∣∣∣
=
∣∣∣eΦ(q)(x−A−ζ)WΦ(q)(x−A− ζ)− eΦ(q)(x−u−A−ζ)WΦ(q)(x− u−A− ζ)

∣∣∣
≤
∣∣∣eΦ(q)(x−A−ζ) − eΦ(q)(x−u−A−ζ)

ψ′(Φ(q))

∣∣∣+ eΦ(q)(x−u−A−ζ) ∣∣WΦ(q)(x−A− ζ)−WΦ(q)(x− u−A− ζ)
∣∣

≤ eΦ(q)(x−A)
(1− e−Φ(q)u

ψ′(Φ(q))
+ u max

x−A
4
≤y≤x−A

W ′Φ(q)(y)
)
,

and hence∫ ε

0
Π(du)f2(A;u, x)

≤ max
0≤ζ≤δ∧x−A

4

|g′(A+ ζ)|
∫ ε

0
u max

0≤ζ≤δ∧x−A
4

∣∣∣W (q)(x−A− ζ)−W (q)(x− u−A− ζ)
∣∣∣Π(du)

≤ max
0≤ζ≤δ∧x−A

4

|g′(A+ ζ)|eΦ(q)(x−A)

∫ ε

0
u
(1− e−Φ(q)u

ψ′(Φ(q))
+ u max

x−A
4
≤y≤x−A

W ′Φ(q)(y)
)

Π(du),

which is finite by (2.1).
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We now obtain the bound for the second term of the right-hand side of (A.4). For every u > ε (which implies
u > c), we have

|q̃(A+ c;u, x)− q̃(A;u, x)|
c

≤ B1(A, c;u, x) +B2(A, c;u, x)

where

B1(A, c;u, x) :=
1

c

[∫ (u+A+c)∧x

(u+A)∧x
W (q)(x− y)|g(y − u)− g(A+ c)|dy +

∫ A+c

A
W (q)(x− y)|g(y − u)− g(A)|dy

]
,

B2(A, c;u, x) :=
|g(A+ c)− g(A)|

c

∫ (u+A)∧x

A+c
W (q)(x− y)dy.

For the former, we have

B1(A, c;u, x) ≤ 3W (q)(x−A) max
A−u≤z≤A+c

|g(z)− g(A)|

≤ 3W (q)(x−A)
(

max
A−u≤z≤A

|g(z)− g(A)|+ max
0≤ζ≤δ

|g(A+ ζ)− g(A+ ζ − u)|
)
.

Here the first inequality holds because |g(y − u)− g(A+ c)| ≤ |g(y − u)− g(A)|+ |g(A)− g(A+ c)|. For the
second inequality, it holds trivially when the maximum is attained for some A − u ≤ z ≤ A. If it is attained at
z = A+ l for some 0 < l ≤ c. Then, because A− u ≤ A+ l − u ≤ A (thanks to c < u) and c < δ

max
A−u≤z≤A+c

|g(z)− g(A)| ≤ |g(A+ l − u)− g(A)|+ |g(A+ l)− g(A+ l − u)|

≤ max
A−u≤z≤A

|g(z)− g(A)|+ max
0≤ζ≤δ

|g(A+ ζ)− g(A+ ζ − u)|.

For the latter, by the C2 property of g in the neighborhood of A, how δ is chosen and c < δ, we obtain

B2(A, c;u, x) ≤ |g(A+ c)− g(A)|
c

∫ x

A+c
W (q)(x− y)dy

≤
(
|g′(A)|+ δ

2
max

A≤ζ≤A+δ
|g′′(ζ)|

)∫ x

A
eΦ(q)(x−y)WΦ(q)(x− y)dy

≤ 1

Φ(q)ψ′(Φ(q))

(
|g′(A)|+ δ

2
max

A≤ζ≤A+δ
|g′′(ζ)|

)
eΦ(q)(x−A).

Therefore,∫ ∞
ε

Π(du)
|q̃(A+ c;u, x)− q̃(A;u, x)|

c

≤ 3W (q)(x−A)

∫ ∞
ε

Π(du)
(

max
A−u≤z≤A

|g(z)− g(A)|+ max
0≤ζ≤δ

|g(A+ ζ)− g(A+ ζ − u)|
)

+
1

Φ(q)ψ′(Φ(q))

(
|g′(A)|+ δ

2
max

A≤ζ≤A+δ
|g′′(ζ)|

)
eΦ(q)(x−A)Π(ε,∞),

which is bounded in c on (0, δ ∧ x−A
4 ) by (2.13) and (3.1).
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Hence, by the dominated convergence theorem,

lim
c↓0

ϕ
(q)
g,A+c(x)− ϕ(q)

g,A(x)

c
=

∫ ∞
0

Π(du) lim
c↓0

q̃(A+ c;u, x)− q̃(A;u, x)

c
=

∫ ∞
0

Π(du)q̃′(A;u, x)

=

∫ ∞
0

Π(du)
[
W (q)(x−A)(g(A)− g(A− u))− g′(A)

∫ (u+A)∧x

A
W (q)(x− z)dz

]
.

The result for the left-derivative can be proved in the same way.

A.3. Proof of Lemma 3.5. It is known as in [11] that σ > 0 guarantees that WΦ(q) is twice continuously differ-
entiable and hence W ′Φ(q) is continuous on (0,∞). Furthermore, (2.11) implies W ′Φ(q)(0+) = 2

σ2 <∞ and (2.10)
implies limx↑∞W

′
Φ(q)(x) = 0. Therefore, there exists L <∞ such that

L := sup
x>0

W ′Φ(q)(x).

Now for every fixed c > 0

(A.5)
1

c

∫ ∞
0

Π(du)

∣∣∣∣∣
∫ u∧(x+c−A)

0
W (q)(x+ c− z −A)(g(z +A− u)− g(A))dz

−
∫ u∧(x−A)

0
W (q)(x− z −A)(g(z +A− u)− g(A))dz

∣∣∣∣∣ ≤ f1(x,A, c) + f2(x,A, c),

where

f1(x,A, c) :=

∫ ∞
0

Π(du)

∫ u∧(x−A)

0
q(x, c, z, A)|g(z +A− u)− g(A)|dz,

f2(x,A, c) :=

∫ ∞
x−A

Π(du)

∫ u∧(x+c−A)

u∧(x−A)

W (q)(x+ c− z −A)

c
|g(z +A− u)− g(A)|dz,

q(x, c, z, A) :=
W (q)(x+ c− z −A)−W (q)(x− z −A)

c
.

Because

q(x, c, z, A) =
eΦ(q)(x+c−z−A)WΦ(q)(x+ c− z −A)− eΦ(q)(x−z−A)WΦ(q)(x− z −A)

c

= eΦ(q)(x−z−A) (eΦ(q)c − 1)WΦ(q)(x+ c− z −A) +
(
WΦ(q)(x+ c− z −A)−WΦ(q)(x− z −A)

)
c

≤ eΦ(q)(x−z−A)
(eΦ(q)c − 1

cψ′(Φ(q))
+ L

)
,

we have

f1(x,A, c) ≤ eΦ(q)(x−A)
(eΦ(q)c − 1

cψ′(Φ(q))
+ L

)
ρ

(q)
g,A.
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On the other hand,

f2(x,A, c) ≤W (q)(x+ c−A)

∫ ∞
x−A

Π(du) max
A∧(x−u)≤y≤A∧(x+c−u)

|g(y)− g(A)|

≤ eΦ(q)(x+c−A)

ψ′(Φ(q))

∫ ∞
x−A

Π(du) max
A−u≤y≤A

|g(y)− g(A)|.

By (2.13) , these bounds on f1 and f2 also bound (A.5), and hence by the dominated convergence theorem and
because W (q)(0) = 0,

lim
c↓0

ϕ
(q)
g,A(x+ c)− ϕ(q)

g,A(x)

c
=

∫ ∞
0

Π(du)
∂

∂x

∫ u∧(x−A)

0
W (q)(x− z −A)(g(z +A− u)− g(A))dz

=

∫ ∞
0

Π(du)

∫ u∧(x−A)

0
W (q)′(x− z −A)(g(z +A− u)− g(A))dz.

The left-derivative can be obtained in the same way. This proves (3.9).
For the proof of (3.10), we first show the following lemma.

Lemma A.1. There exists a finite constant CA independent of x such that∫ ∞
0

Π(du)

∫ u∧(x−A)

0
W (q)′(x− z −A)|g(z +A− u)− g(A)|dz ≤ eΦ(q)(x−A)CA, x > A.

Proof. Define

φ1(x,A) :=

∫ 1

0
Π(du)

∫ u∧(x−A)

0
W (q)′(x− z −A)|g(z +A− u)− g(A)|dz,

φ2(x,A) :=

∫ ∞
1

Π(du)

∫ u∧(x−A)

0
W (q)′(x− z −A)|g(z +A− u)− g(A)|dz.

It is sufficient to show there exist finite constants C1,A and C2,A independent of x such that

(1) φ1(x,A) ≤ eΦ(q)(x−A)C1,A,
(2) φ2(x,A) ≤ eΦ(q)(x−A)C2,A.

Choosing 0 < ε < 1 and %A,ε as in the proof of Lemma 2.4, we obtain by (A.1)

φ1(x,A) ≤
∫ ε

0
Π(du)

(
u|g′(A)|+ 1

2
u2%A,ε

)∫ u∧(x−A)

0
W (q)′(x− z −A)dz

+ 2 max
A−1≤ζ≤A

|g(ζ)|
∫ 1

ε
Π(du)

∫ u∧(x−A)

0
W (q)′(x− z −A)dz

=

∫ ε

0
Π(du)

(
u|g′(A)|+ 1

2
u2%A,ε

)(
W (q)(x−A)−W (q)((x−A− u) ∨ 0)

)
+ 2 max

A−1≤ζ≤A
|g(ζ)|

∫ 1

ε
Π(du)

(
W (q)(x−A)−W (q)((x−A− u) ∨ 0)

)
.
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Because, by (2.10),

W (q)(x−A)−W (q)((x−A− u) ∨ 0)

= eΦ(q)(x−A)
[(
WΦ(q)(x−A)−WΦ(q)((x−A− u) ∨ 0)

)
+
(

1− e−Φ(q)(u∧(x−A))
)
WΦ(q)((x−A− u) ∨ 0)

]
≤ eΦ(q)(x−A)

(
Lu+

1− e−Φ(q)u

ψ′(Φ(q))

)
,

we have φ1(x,A) ≤ eΦ(q)(x−A)C1,A with

C1,A :=

∫ ε

0
Π(du)

(
u|g′(A)|+ 1

2
u2%A,ε

)(
Lu+

1− e−Φ(q)u

ψ′(Φ(q))

)
+ 2 max

A−1≤ζ≤A
|g(ζ)|

∫ 1

ε
Π(du)

(
Lu+

1− e−Φ(q)u

ψ′(Φ(q))

)
,

which is finite thanks to (2.1) and by applying the Taylor expansion to
(
1− e−Φ(q)u

)
to the first integral. Hence

(1) is obtained. The proof of the existence of C2,A that satisfies (2) is immediate because

φ2(x,A) ≤
∫ ∞

1
Π(du) max

A−u≤y≤A
|g(y)− g(A)|

∫ u∧(x−A)

0
W (q)′(x− z −A)dz

≤W (q)(x−A)

∫ ∞
1

Π(du) max
A−u≤y≤A

|g(y)− g(A)|,

and W (q)(x−A) ≤ eΦ(q)(x−A)/ψ′(Φ(q)) by (2.10). �

Now using the lemma above, we can interchange the limit via the dominated convergence theorem as x ↓ A in
(3.9) and obtain (3.10). This completes the proof.
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(M. Egami) GRADUATE SCHOOL OF ECONOMICS, KYOTO UNIVERSITY, SAKYO-KU, KYOTO, 606-8501, JAPAN

E-mail address: egami@econ.kyoto-u.ac.jp
URL: http://www.econ.kyoto-u.ac.jp/˜egami/

(K. Yamazaki) CENTER FOR THE STUDY OF FINANCE AND INSURANCE, OSAKA UNIVERSITY, 1-3 MACHIKANEYAMA-
CHO, TOYONAKA CITY, OSAKA 560-8531, JAPAN

E-mail address: k-yamazaki@sigmath.es.osaka-u.ac.jp
URL: http://www-csfi.sigmath.es.osaka-u.ac.jp/faculty/personal/yamazaki/index.html


	表紙DP
	OSP201101030.pdf
	1. Introduction
	2. The Optimal Stopping Problem for Spectrally Negative Lévy Processes
	2.1. Scale functions
	2.2. Expressing the expected payoff using the scale function

	3. First-Order Condition and Continuous and Smooth fit
	3.1. First-order condition
	3.2. Continuous and smooth fit
	3.3. Obtaining optimal solution

	4. Examples
	4.1. Perpetual American put option
	4.2. Generalization of Egami and Yamazaki Egami-Yamazaki-2010-1 

	5. Concluding Remarks
	Appendix A. Proofs
	A.1. Proof of Lemma 2.4
	A.2. Proof of Lemma 3.1
	A.3. Proof of Lemma 3.5

	References


