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Model

Let Y = (Y;) be an R%valued Lévy process modelling relative
price movements (i.e. dY{ = dS}/Si_ or Si = Si&(Y")) :

dY: = put + =dwy + /z(p(dz, dt) — MN(dz)dt)

w is a Wiener process and p(dt, dx) is a Poisson random measure
with the compensator I(dz)dt where 1(dz) is concentrated on
] — 1,00]. The matrix = is such that A = ==* is non-degenerated,

/(|z|2 Az)N(dz) < oo.

Let K and C be proper cones in RY such that C C int K # ). The
set A, of controls m = (B, C) is the set of predictable cadlag
processes of bounded variation such that dC; = ¢;dt and

Be —K, ceC.
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Dynamics
The process V = V*7 is the solution of the linear system
dVi= V. dY+dBi—dCl, Vj_ =x', i=1,..,d.
This solution can be expressed explicitly using the Doléans-Dade

exponentials S/ = & (Y') (we assume that Sp = 1) :

. . . 1 . .
v;:s;x'+s;/ —(dBi — dC}), i=1,...d.

.4 Si-
We introduce the stopping time
=07 :=inf{t: V" ¢ intK}.

For x € int K we consider the subset A% of “admissible” controls
for which m = g gx.<7, i.e. the process V™ stops at the moment
of ruin : no more consumption.
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Goal Functional

Let U : C — R4 be a concave function such that U(0) = 0 and
U(X)/’X‘ — 0 as ’X‘ — 00. For m = (B7 C) c A; we put

t
Jr ::/ e P U(cs)ds
0

and consider the infinite horizon maximization problem with the
goal functional EJ_ . The Bellman function
W(x) := sup EJ

T, x€intK,
TEAX
is increasing with respect to the partial ordering > .
The process VAat(1=A)xAm+(1=MNm2 is the convex combination of
V*i™i with the same coefficients. For continuous Y the ruin time
is the maximum of 6%°™ and the concavity of u implies the
concavity of W. But if Y has jumps, the ruin times are not related
in this way and we cannot guarantee (at least, by the above
argument) that the Bellman function is concave.
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The Hamilton—Jacobi—Bellman Equation, |

Let G := (—K) N 0O1(0) where O,(y) :={x €RY: |x —y| < r}
Then —K = cone G. We denote by ¥ ¢ the support function of G,
i.e. Xg(p) = supyeg px. Put

F(X,p,Z(f,x), W,x) =max{Fo(X, p, Z(f,x), W,x) + U*(p), Zs(p)},

where X € Sy, the set of d X d symmetric matrices, p, x € RY,
W € R, f € Ci(K) N C?(x) and the function Fy is given by

Fo(X,p,Z(f,x),W,x) = %trA(x)X + u(x)p+ Z(f, x) — W (x)

5 Za”X’XJX’J + Zu’x‘p’ +Z(f,x) — BW(x)

iJ i

where A(x) is the matrix with AV(x) = alx'x/, u/(x) = p'x’,
I(f,x)= /(f(x—l—diagxz)—f(x)—diagxzf’(x))l(z,x)l_l(dz)7 x € int K,
I(z,x) = I{z: xtdiag xzek} = Ik(x + diag xz).
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The Hamilton—Jacobi—Bellman Equation, Il

If ¢ is a smooth function, we put
L(x) = F(¢"(x), &' (x), Z($, x), $(x), x).

In a similar way, Lo corresponds to the function Fg.
We show, under mild hypotheses, that W is the unique viscosity
solution of the Dirichlet problem for the HJB equation

F(W"(x), W'(x),Z(W,x), W(x),x) = 0, x¢cintK,
W(x) = 0, x € 0K.
In general, W has no derivatives at some points x € intK and the

notation above needs to be interpreted. The idea of viscosity
solutions is to substitute W in F by suitable test functions.
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Viscosity Solutions

@ A function v € C(K) is called viscosity supersolution (of HJB)
if for every x € int K and every f € C1(K) N C?(x) such that
v(x) = f(x) and v > f the inequality £f(x) < 0 holds.

@ A function v € C(K) is called viscosity subsolution of if for
every x € int K and every f € C1(K) N C?(x) such that
v(x) = f(x) and v < f the inequality £f(x) > 0 holds.

o v € C(K) is viscosity solution of if v is simultaneously a
viscosity super- and subsolution.

o v € Ci(K) N C?(int K) is classical supersolution of HIB if
Lv <0 on int K. We add the adjective strict when Lv < 0 on
the set int K.

Suppose that the function v is a viscosity solution. If v is twice
differentiable at xg € int K, then it satisfies HJB at this point in

the classical sense.
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Jets

For p € R? and X € Sy we put Q, x(z) = pz + (1/2)(Xz, z) and

define the super- and of a function v at the point x :
Jv(x) = {(p.X): v(x+h) < v(x)+ Qux(h) +o(|h]*)},
Jv(x) = {(p,X): vx+h) = v(x)+ Qpx(h) + o|h*)}.

lLe. JTv(x) is the family of coefficients of quadratic

functions v(x) + Qp x(y — .) dominating v(.)

near x up to the 2nd order and coinciding with v(.) at x.
For integro-differential operators viscosity solution does not admit
an equivalent formulation in terms of jets.

Let v be a viscosity supersolution, x € int K, and (p, X) € J~v(x).
Then there is a function f € C;(K) N C?(x) such that f'(x) = p,
f"(x) =X, f(x) = v(x), f > v on K and, hence,

F(X,p,Z(f,x), W(x),x) <O0.
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Supermaringales and Majorants of W

Put V = V7= = Vijg g + Vir—l[g,0o[ Where 0 is the ruin time.
Let ® be the set of continuous functions f : K — R increasing
with respect to >k and such that for each x € int K, m € A

X = XTxm = e P (V) + U,

is a supermartingale. This set is convex and stable under the
operation A. Any continuous function which is a monotone limit of
functions from @ also belongs to ¢.

(a) Iff € ®, then W < f;
(b) if a point y € OK is such that there is f € ® with f(y) =0,
then W is continuous at y.

Proof. Indeed : EJF < EXI < f(Vg) = f(Vo) < f(Vo_) = F().
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Supermaringales and Supersolutions of HJB, |

Let f : K — Ry be a function in C;(K) N C?(int K). If f is a
classical supersolution of HJB, then f is a monotone function and
X is a supermartingale, i.e. f € .

Proof. A classical supersolution is increasing with respect to >.
Indeed, for any x, h € int K there is ¥ € [0, 1] such that

f(x+h)—f(x)=Ff(x+9h)h>0

because for the supersolution X(f’(y)) < 0 when y € int K, or,
equivalently, f'(y)h > 0 for every h € K. By continuity,
f(x+ h) —f(x) > 0 for every x, h € K.
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Supermaringales and Supersolutions of HJB, Il

Using the It6 formula we have :
tAl . .
X = f(x) +/ e P[Lof (Vo) — csf' (V) 4 U(cs)]ds + R: + my,
0
where the integral is a decreasing process (since [...] < Lf(V)),

tAO
R = / e PF (Ve )dBS + > e P[F(Ve + ABs) — F(V,)]
0

s<t

is also decreasing and m is the local martingale with
tAO . .
m, = / e P5f'(V,_)diag V. =dws
0
t
b [ [ e T+ ding Vi2) = A (Vs 2, ).
0

p(dz, ds) = p(dz, ds) — MN(dz)ds.
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Strict Local Supersolutions

We fix a ball O,(x) C int K and define 77 as the exit time of V7~
from O,(x), i.e.

T =inf{t>0: |V —x|>r}.

Let f € Ci(K) N C%(O,(x)) be such that Lf < —& < 0 on O,(x).
Then there exist a constant n > 0 and an interval |0, to] such that

sup EthA’);’f < f(x) —nt Vt €]0, to].
TeA
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Dynamic Programming Principle

For the following two assertions we need to assume that € is a
path space.

Lemma

Let Tr and T} be, respectively, the sets of all finite and bounded
stopping times. Then

W(x) < sup inf E (ﬂ +e AT (VX ”))
TEAX €Ty

Assume that W(x) is continuous on int K. Then for any T € T¢

W(x) > sup E (ﬂ + e ATW (VX ”)) .
TEAX
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Bellman Function and HJB

Assume that the Bellman function W is in C(K). Then W is a
viscosity solution of the HJB equation).

Proof.
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Uniqueness Theorem for HIB

Definition. We say that a positive function £ € C(K) N C?(int K)
is the Lyapunov function if the following properties are satisfied :
1) ¢(x) € int K* and Lol(x) < 0 for all x € int K,

2) {(x) — o0 as |x| — oc.

Theorem

Assume that the jump measure Il does not charge

(d — 1)-dimensional surfaces. Suppose that there exists a Lyapunov
function ¢. Then the Dirichlet problem for the HJB equation has at
most one viscosity solution in the class of continuous functions
satisfying the growth condition

W(x)/l(x) — 0, |x| — oo.
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Uniqueness Theorem for HJB. Idea of the proof, |

Let W and W be two viscosity solutions of HJB coinciding on K.
Suppose that W(z) > W(z) for some z € K. Take € > 0 such that

W(z) — W(z) — 2ef(z) > 0.

Define continuous functions A, : K x K — R
- 1
Bo(x,y) = W(x) = W(y) = 5alx =y = cl() + £y)], n >0,

Note that Ap(x, x) = Ao(x, x) for all x € K and Ag(x, x) < 0 when

x € OK. Since ¢ has a higher growth rate than W we deduce that
Ap(x,y) = —o0 as |x| + |y| — co. The sets {A, > a} are compacts and
A, attains its maximum. l.e., there is (x,, y,) € K x K such that

An(Xna)/n) = An = sup An(va) > A ‘= sup A0(X7X) > 0.
(x,y)EKxXK xeK

All (xn, yn) belong to the compact {(x,y) : Ao(x,y) > 0}. Thus, the
sequence n|x, — y,|? is bounded. We assume wlg that (x,, y,) converge

to (X,X). Also, n|x, — ys|> — 0 (otherwise we Ag(X,x) > A). Clearly,

A, — Ag(X,X) = A. Thus, X is in the interior of K-and so are x,, and y
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Uniqueness Theorem for HJB. The Ishii Lemma.

Lemma

Let v and Vv be two continuous functions on an open subset

O C RY. Consider the function A(x,y) = v(x )= V(y) - Injx—y?
with n > 0. Suppose that A attains a local maximum at (x y).
Then there are symmetric matrices X and Y such that

(n(x =9),X) € J'v(x),  (n(X=7),Y) €I ),

(5 & )=on(5 7).

Here J*v(x) and J~v(x) are values of the set-valued mappings
whose graphs are closures of graphs of J*v and J™v.
The matrix inequality implies the bound

r (AG)X — AY)Y) < 3n]AY2|x — y P2
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Uniqueness Theorem for HIB. Idea of the proof, Il

By the Ishii lemma applied to v = W — el and ¥ = W + ¢f at the
point (xn, yn) there exist matrices X” and Y such that

(n(xn — yn), X") € Jtv(xy), (n(xn = yn), Y") € J7V(yn)-

Using the notations p, = n(xn Yn) + €l (xn),
Gn = n(xn —yn) —l'(yn), Xn = X"+l (xn), Yo =Y"—el"(yn),
we may rewrite the last relatlons in the following equivalent form :

(pn, Xn) € JTW(xp), (Gn, Yn) € I~ W(yp).

Since W and W are viscosity sub- and supersNqutions, one can
find, the functions f, € C1(K) N C?(x,) and f, € Ci(K) N C?(y»)
such that £1(xa) = pn, ' (xn) = Xo, fa(xn) = W(xa), fs < W on

K, and /(yn) = qn, £'(vn) = Yo falyn) = W(yn), f, > W on K,
F(Xnvpnvz.(fnvxn)7 W(Xn)vxn) Z O Z F(Yl‘h qnvz.(?n7yn)7 W(yn)7yn)
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Uniqueness Theorem for HJB. ldea of the proof, Ill

The second inequality implies that mg, < 0 for each
mée G = (—K)NdO01(0). But for the Lyapunov function
?'(x) € int K* when x € int K and, therefore,

mp, = mq, + 5m(£,(xn) + El(Yn)) <0.
Since G is a compact, Xg(pn) < 0. It follows that

FO(Xnvme(fn’Xn)v W(Xn)7X”) + U*(p”)

FO(Ym qnaI(men)a W(Yn)ayn) + U*(qn)

)

0
0.

IN IV

Recall that U* is decreasing with respect to the partial ordering
generated by C* hence also by K*. Thus, U*(p,) < U*(qgn) and we
obtain the inequality

b, = FO(Xname(men)v W(Xn)axn)_FO(an qnaz—(?m)/n)a W(Yn)vyn) >0
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Uniqueness Theorem for HJB. ldea of the proof, IV

Clearly,

d

d
1 i i( i i
= 5 Z aJXan'le;' a ynynyn)+nzlu' (Xn _yn)2
i=1

*Eﬂ’ﬂxn - )/n|2 - BAn(Xna)/n) +I(fn - 5€,X,,) - I(?n + e, )/n)
+5(£0€(Xn) +£0€(yn))

The first term in the rhs is dominated by a constant multiplied by
n|xn — ya|?; a similar bound for the second sum is obvious; the last
term is negative according to the definition of the Lyapunov
function. To complete the proof, it remains to show that

limsup (Z(f, — e, xp) — Z(Fy + €, yn)) < 0.

n

Indeed, with this we have that limsup b, < —3A < 0.
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Uniqueness Theorem for HIB. Idea of the proof, V

Let
Fo(z) = [(f,7 —el)(xn + diag xpz) — (f, — €€)(xn)
~diag xnz(] — ') (xn)] (2, x0),
Fo(z) = [(’?n +el)(yn + diag ynz) — (fo + €)(yn)
—diag ynz(, + ') (vn)] (2, yn)-

and H,(z) = F,(z) — Fn(z) With this notation
T(fy ~ etox) ~ T+ ct.y) = [ Hal2)N(ck)

and the needed inequality will follow from the Fatou lemma if we
show that there is a constant C such that for all sufficiently large n

Ho(z) < C(|z| A |z|?) forallze K (1)
and

limsup Hy(z) <0 [l-as. (2)
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Uniqueness Theorem for HJB. Idea of the proof, VI

Using the properties of f, we get the bound :
Fo(z) < [(W —el)(xp + diag xpz) — (W — &) (xp)
—diag ann(Xn - Yn)] /(Z, Xn)

Since the continuous function W and / are of sublinear growth and

the sequences x, and n(x, — y,) are converging (hence bounded),
absolute value of the function in the right-hand side of this

inequality is dominated by a function c(1 + |z[). The arguments for

—F,(2) are similar. So, the function H,, is of sublinear growth.
We have the following identity :

Ho(z) = (An(xn + diag x,z, yn + diag ynz) — An(Xn, yn)
+(1/2)n|diag (x, — ya)z|*)I(z,x2)1(2, yn)
+(fa(xn + diag x,2) — W(x, + diag x,2))/(2, x)1 (2, yn)

—(Fayn + diag ynz) — W (ys + diag yaz))/ (2, %) (2, ¥n)
+Fa(2)(1 = 1(z,ym)) = Fa(2)(1 = 1(2, x0))-
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Uniqueness Theorem for HJB. Idea of the proof, VII

The function A(x, y) attains its maximum at (x,,y,) and f, < W,
f, > W. It follows that

Hn(2) < (1/2)n|x0—yal*|2*+Fa(2)(1~1(2, yn))~ Fa(2) (11 (2, x0)).

Let 6 > 0 be the distance between X from and K. Then

Xn, ¥n € 05/2(X) for large n and, hence, the second and the third
terms in the rhs above are functions vanishing on 01(0). So, for
such n the function H, is dominated from above on O;(0) by
cn|z|? where ¢, := (1/2)n|x, — y,|*> — 0 as n — co. Therefore, (1)
holds. The relation (1) also holds because the second and the first
terms tends to zero (stationarily) for all z except the set

{z: X+ diagxz € OK}. The coordinates of points of 9K \ {0}
are non-zero. So this set is empty if X has a zero coordinate. If all
components X are nonzero, the operator X is non-degenerated and
the set in question is of zero measure 1 in virtue of our assumption.
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Lyapunov Functions, |

Let u € C(Ry) N C?(R; \ {0}) be increasing strictly concave,
u(0) = 0, u(co) = co. Define R = —u'?/(u"u) and assume that
R = sup,- R(2) < <.

For p € K*\ {0} define the function f(x) = f, (x) = u(px). If

y € K and x # 0, then yf'(x) = (py)u'(px) < 0. The inequality is
strict when p € int K*. . o

Recall that AY(x) = AUx'x/ and p'(x) = p'x’. Suppose that
(A(x)p, p) # 0. Isolating the full square we get that Lof(x) is
equal to

(AP, e (<) + 20u(x). ) (o) + %3}32 o

2

1 (u(x). p)?
T2 1AM)p. p)
Note that
(f(x + diag xz) — f(x) — diag xzf'(x)) = (1/2)u"(...)(px)? < 0.
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Lyapunov Functions, Il

It follows that Lof(x) < 0 if 8> n(p)R where

If (A(x)p, p) =0 and (u(x), p) =0, then Lof(x) = —Pu(px) <0
for any 3 > 0.

Proposition

Let p € int K*. Suppose that (u(x), p) vanishes on the set
{x eint K: (A(x)p,p) =0}. If 8 > n(p)R, then f, is a Lyapunov
function.
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Existence of Classical Supersolutions

The same ideas are useful also in the search of supersolutions.

Since Lf = Lof + U*(f'), it is natural to choose u related to U.
For the case where C = R{ and U(c) = u(eic), with u satisfying
the postulated properties and assuming, moreover, the inequality

u*(au'(z)) < g(a)u(2)

we get, using the homogeneity of Ly, the following result.

Proposition

Assume (A(x)p, p) # 0 for all x € int K and p € K*\ {0}. Suppose
that g(a) = o(a) as a — oo. If B > 7R, then there is ag such that
for every a > ag the function af, is a classical supersolution of
HJB, whatever is p € K* with p* # 0. Moreover, if p € int K*,
then af, is a strict supersolution on any compact subset of int K.

ot
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Power Utility Function

For the power utility function u(z) = z7/~, v €]0, 1], we have :
R(z)=7/(1-7) =R,
u*(ad'(2) = (1= 1) 07 Vu(z) = g(a)u(2).

If A= diago, o' =0, u! = 0 (the first asset is the numéraire) and
o' # 0 for i # 1, then, by the Cauchy-Schwarz inequality,

14 2
n(p) < 5 ; <;> .
The inequality
B> v 1 i (”—I>2
1—~v2 P o'
(implying the bound /3 > 7jR) ensures the existence of a classical

supersolution.
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