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K., Klüppelberg. FS, 2004.

Benth, Karlsen, Reikvam. 2000.

Yuri Kabanov HJB equations 2 / 28



Model

Let Y = (Yt) be an Rd -valued Lévy process modelling relative

price movements (i.e. dY i
t = dS i

t/S
i
t− or S i

t = S i
0Et(Y

i )) :

dYt = µt + Ξdwt +

∫
z(p(dz , dt) − Π(dz)dt)

w is a Wiener process and p(dt, dx) is a Poisson random measure
with the compensator Π(dz)dt where Π(dz) is concentrated on
]− 1,∞]d . The matrix Ξ is such that A = ΞΞ∗ is non-degenerated,

∫
(|z |2 ∧ |z |)Π(dz) < ∞.

Let K and C be proper cones in Rd such that C ⊆ intK 6= ∅. The
set Aa of controls π = (B,C ) is the set of predictable càdlàg
processes of bounded variation such that dCt = ctdt and

Ḃ ∈ −K , c ∈ C.
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Dynamics

The process V = V x ,π is the solution of the linear system

dV i
t = V i

t−dY i
t + dB i

t − dC i
t , V i

0− = x i , i = 1, ..., d .

This solution can be expressed explicitly using the Doléans-Dade
exponentials S i

t = Et(Y
i) (we assume that S0 = 1) :

V i
t = S i

tx
i + S i

t

∫

[0,t]

1

S i
s−

(dB i
s − dC i

s ), i = 1, ..., d .

We introduce the stopping time

θ = θx ,π := inf{t : V x ,π
t /∈ intK}.

For x ∈ intK we consider the subset Ax
a of“admissible”controls

for which π = I[0,θx,π]π, i.e. the process V x ,π stops at the moment
of ruin : no more consumption.
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Goal Functional

Let U : C → R+ be a concave function such that U(0) = 0 and
U(x)/|x | → 0 as |x | → ∞. For π = (B,C ) ∈ Ax

a we put

Jπ
t :=

∫ t

0
e−βsU(cs)ds

and consider the infinite horizon maximization problem with the
goal functional EJπ

∞. The Bellman function

W (x) := sup
π∈Ax

a

EJπ
∞ , x ∈ intK ,

is increasing with respect to the partial ordering ≥K .
The process V λx1+(1−λ)x2,λπ1+(1−λ)π2 is the convex combination of
V xi ,πi with the same coefficients. For continuous Y the ruin time
is the maximum of θxi ,πi and the concavity of u implies the
concavity of W . But if Y has jumps, the ruin times are not related
in this way and we cannot guarantee (at least, by the above
argument) that the Bellman function is concave.
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The Hamilton–Jacobi–Bellman Equation, I

Let G := (−K ) ∩ ∂O1(0) where Or (y) := {x ∈ Rd : |x − y | < r}
Then −K = cone G . We denote by ΣG the support function of G ,
i.e. ΣG (p) = supx∈G px . Put

F (X , p, I(f , x), W , x) = max{F0(X , p, I(f , x), W , x) + U∗(p), ΣG (p)},

where X ∈ Sd , the set of d × d symmetric matrices, p, x ∈ Rd ,
W ∈ R, f ∈ C1(K ) ∩ C 2(x) and the function F0 is given by

F0(X , p, I(f , x), W , x) =
1

2
trA(x)X + µ(x)p + I(f , x) − βW (x)

=
1

2

∑

i ,j

aijx ix jX ij +
∑

i

µix ipi + I(f , x) − βW (x)

where A(x) is the matrix with Aij(x) = aijx ix j , µi(x) = µix i ,

I(f , x) =

∫
(f (x+diag xz)−f (x)−diag xzf ′(x))I (z, x)Π(dz), x ∈ intK ,

I (z, x) = I{z : x+diag xz∈K} = IK (x + diag xz).
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The Hamilton–Jacobi–Bellman Equation, II

If φ is a smooth function, we put

Lφ(x) := F (φ′′(x), φ′(x),I(φ, x), φ(x), x).

In a similar way, L0 corresponds to the function F0.
We show, under mild hypotheses, that W is the unique viscosity
solution of the Dirichlet problem for the HJB equation

F (W ′′(x),W ′(x),I(W , x),W (x), x) = 0, x ∈ intK ,

W (x) = 0, x ∈ ∂K .

In general, W has no derivatives at some points x ∈ intK and the
notation above needs to be interpreted. The idea of viscosity
solutions is to substitute W in F by suitable test functions.
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Viscosity Solutions

A function v ∈ C (K ) is called viscosity supersolution (of HJB)
if for every x ∈ intK and every f ∈ C1(K ) ∩ C 2(x) such that
v(x) = f (x) and v ≥ f the inequality Lf (x) ≤ 0 holds.
A function v ∈ C (K ) is called viscosity subsolution of if for
every x ∈ intK and every f ∈ C1(K ) ∩ C 2(x) such that
v(x) = f (x) and v ≤ f the inequality Lf (x) ≥ 0 holds.
v ∈ C (K ) is viscosity solution of if v is simultaneously a
viscosity super- and subsolution.
v ∈ C1(K ) ∩ C 2(intK ) is classical supersolution of HJB if
Lv ≤ 0 on intK . We add the adjective strict when Lv < 0 on
the set intK .

Lemma

Suppose that the function v is a viscosity solution. If v is twice
differentiable at x0 ∈ intK, then it satisfies HJB at this point in
the classical sense.
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Jets

For p ∈ Rd and X ∈ Sd we put Qp,X (z) = pz + (1/2)〈Xz , z〉 and
define the super- and subjets of a function v at the point x :

J+v(x) = {(p, X ) : v(x + h) ≤ v(x) + Qp,X (h) + o(|h|2)},

J−v(x) = {(p, X ) : v(x + h) ≥ v(x) + Qp,X (h) + o(|h|2)}.

I.e. J+v(x) (resp. J−v(x)) is the family of coefficients of quadratic
functions v(x) + Qp,X (y − .) dominating v(.) (resp., dominated by
v(.)) near x up to the 2nd order and coinciding with v(.) at x .
For integro-differential operators viscosity solution does not admit
an equivalent formulation in terms of jets.

Lemma

Let v be a viscosity supersolution, x ∈ intK, and (p,X ) ∈ J−v(x).
Then there is a function f ∈ C1(K ) ∩ C 2(x) such that f ′(x) = p,
f ′′(x) = X, f (x) = v(x), f ≥ v on K and, hence,

F (X , p,I(f , x),W (x), x) ≤ 0.
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Supermaringales and Majorants of W

Put Ṽ = V θ− = VI[0,θ[ + Vσ−I[θ,∞[ where θ is the ruin time.
Let Φ be the set of continuous functions f : K → R+ increasing
with respect to ≥K and such that for each x ∈ intK , π ∈ Ax

a

X f = X f ,x ,π = e−βt f (Ṽ ) + Jπ,

is a supermartingale. This set is convex and stable under the
operation ∧. Any continuous function which is a monotone limit of
functions from Φ also belongs to Φ.

Lemma

(a) If f ∈ Φ, then W ≤ f ;
(b) if a point y ∈ ∂K is such that there is f ∈ Φ with f (y) = 0,
then W is continuous at y .

Proof. Indeed : EJπ
t ≤ EX f

t ≤ f (Ṽ0) = f (V0) ≤ f (V0−) = f (x).
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Supermaringales and Supersolutions of HJB, I

Lemma

Let f : K → R+ be a function in C1(K ) ∩ C 2(intK ). If f is a
classical supersolution of HJB, then f is a monotone function and
X f is a supermartingale, i.e. f ∈ Φ.

Proof. A classical supersolution is increasing with respect to ≥K .
Indeed, for any x , h ∈ intK there is ϑ ∈ [0, 1] such that

f (x + h) − f (x) = f ′(x + ϑh)h ≥ 0

because for the supersolution ΣG (f ′(y)) ≤ 0 when y ∈ intK , or,
equivalently, f ′(y)h ≥ 0 for every h ∈ K . By continuity,
f (x + h) − f (x) ≥ 0 for every x , h ∈ K .
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Supermaringales and Supersolutions of HJB, II

Using the Itô formula we have :

X f
t = f (x) +

∫ t∧θ

0
e−βs [L0f (Ṽs)− cs f

′(Ṽs) + U(cs)]ds + Rt + mt ,

where the integral is a decreasing process (since [...] ≤ Lf (Ṽs)),

Rt =

∫ t∧θ

0

e−βsf ′(Vs−)dBc
s +

∑

s≤t

e−βs [f (Ṽs− + ∆Bs) − f (Ṽs−)]

is also decreasing and m is the local martingale with

mt =

∫ t∧θ

0

e−βs f ′(Ṽs−)diag ṼsΞdws

+

∫ t

0

∫
e−βs [f (Ṽs− + diag Ṽs−z) − f (Ṽs−)]I (Ṽs−, z)p̃(dz, ds).

p̃(dz , ds) = p(dz , ds) − Π(dz)ds.
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Strict Local Supersolutions

We fix a ball Ōr (x) ⊆ intK and define τπ as the exit time of V π,x

from Or (x), i.e.

τπ = inf{t ≥ 0 : |V π,x
t − x | ≥ r}.

Lemma

Let f ∈ C1(K ) ∩ C 2(Ōr (x)) be such that Lf ≤ −ε < 0 on Ōr (x).
Then there exist a constant η > 0 and an interval ]0, t0] such that

sup
π∈Ax

a

EX f ,x ,π
t∧τπ ≤ f (x) − ηt ∀ t ∈]0, t0].
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Dynamic Programming Principle

For the following two assertions we need to assume that Ω is a
path space.

Lemma

Let Tf and Tb be, respectively, the sets of all finite and bounded
stopping times. Then

W (x) ≤ sup
π∈Ax

a

inf
τ∈Tf

E
(
Jπ
τ + e−βτW (V x ,π

τ− )
)

.

Lemma

Assume that W (x) is continuous on intK. Then for any τ ∈ Tf

W (x) ≥ sup
π∈Ax

a

E
(
Jπ
τ + e−βτW (V x ,π

τ− )
)

.
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Bellman Function and HJB

Theorem

Assume that the Bellman function W is in C (K ). Then W is a
viscosity solution of the HJB equation).

Proof.
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Uniqueness Theorem for HJB

Definition. We say that a positive function ℓ ∈ C (K ) ∩ C 2(intK )
is the Lyapunov function if the following properties are satisfied :
1) ℓ′(x) ∈ intK ∗ and L0ℓ(x) ≤ 0 for all x ∈ intK ,
2) ℓ(x) → ∞ as |x | → ∞.

Theorem

Assume that the jump measure Π does not charge
(d − 1)-dimensional surfaces. Suppose that there exists a Lyapunov
function ℓ. Then the Dirichlet problem for the HJB equation has at
most one viscosity solution in the class of continuous functions
satisfying the growth condition

W (x)/ℓ(x) → 0, |x | → ∞.
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Uniqueness Theorem for HJB. Idea of the proof, I

Let W and W̃ be two viscosity solutions of HJB coinciding on ∂K .
Suppose that W (z) > W̃ (z) for some z ∈ K . Take ε > 0 such that

W (z) − W̃ (z) − 2εℓ(z) > 0.

Define continuous functions ∆n : K × K → R

∆n(x , y) := W (x) − W̃ (y) −
1

2
n|x − y |2 − ε[ℓ(x) + ℓ(y)], n ≥ 0.

Note that ∆n(x , x) = ∆0(x , x) for all x ∈ K and ∆0(x , x) ≤ 0 when
x ∈ ∂K . Since ℓ has a higher growth rate than W we deduce that
∆n(x , y) → −∞ as |x | + |y | → ∞. The sets {∆n ≥ a} are compacts and
∆n attains its maximum. I.e., there is (xn, yn) ∈ K × K such that

∆n(xn, yn) = ∆̄n := sup
(x,y)∈K×K

∆n(x , y) ≥ ∆̄ := sup
x∈K

∆0(x , x) > 0.

All (xn, yn) belong to the compact {(x , y) : ∆0(x , y) ≥ 0}. Thus, the

sequence n|xn − yn|2 is bounded. We assume wlg that (xn, yn) converge

to (x̂ , x̂). Also, n|xn − yn|2 → 0 (otherwise we ∆0(x̂ , x̂) > ∆̄). Clearly,

∆̄n → ∆0(x̂ , x̂) = ∆̄. Thus, x̂ is in the interior of K and so are xn and yn.
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Uniqueness Theorem for HJB. The Ishii Lemma.

Lemma

Let v and ṽ be two continuous functions on an open subset
O ⊆ Rd . Consider the function ∆(x , y) = v(x)− ṽ(y)− 1

2n|x − y |2

with n > 0. Suppose that ∆ attains a local maximum at (x̂ , ŷ).
Then there are symmetric matrices X and Y such that

(n(x̂ − ŷ ), X ) ∈ J̄+v(x̂), (n(x̂ − ŷ), Y ) ∈ J̄−ṽ(ŷ ),

and (
X 0
0 −Y

)
≤ 3n

(
I −I

−I I

)
.

Here J̄+v(x) and J̄−v(x) are values of the set-valued mappings
whose graphs are closures of graphs of J+v and J−v .
The matrix inequality implies the bound

tr (A(x)X − A(y)Y ) ≤ 3n|A|1/2|x − y |2.
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Uniqueness Theorem for HJB. Idea of the proof, II

By the Ishii lemma applied to v = W − εℓ and ṽ = W̃ + εℓ at the
point (xn, yn) there exist matrices X n and Y n such that

(n(xn − yn),X
n) ∈ J̄+v(xn), (n(xn − yn),Y

n) ∈ J̄−ṽ(yn).

Using the notations pn = n(xn − yn) + εℓ′(xn),
qn = n(xn − yn)− εℓ′(yn), Xn = X n + εℓ′′(xn), Yn = Y n − εℓ′′(yn),
we may rewrite the last relations in the following equivalent form :

(pn,Xn) ∈ J̄+W (xn), (qn,Yn) ∈ J̄−W̃ (yn).

Since W and W̃ are viscosity sub- and supersolutions, one can
find, the functions fn ∈ C1(K ) ∩ C 2(xn) and f̃n ∈ C1(K ) ∩ C 2(yn)
such that f ′n(xn) = pn, f ′′n (xn) = Xn, fn(xn) = W (xn), fn ≤ W on
K , and f̃ ′n(yn) = qn, f̃ ′′n (yn) = Yn, f̃n(yn) = W̃ (yn), f̃n ≥ W̃ on K ,

F (Xn, pn,I(fn, xn),W (xn), xn) ≥ 0 ≥ F (Yn, qn,I(f̃n, yn), W̃ (yn), yn).
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Uniqueness Theorem for HJB. Idea of the proof, III

The second inequality implies that mqn ≤ 0 for each
m ∈ G = (−K ) ∩ ∂O1(0). But for the Lyapunov function
ℓ′(x) ∈ intK ∗ when x ∈ intK and, therefore,

mpn = mqn + εm(ℓ′(xn) + ℓ′(yn)) < 0.

Since G is a compact, ΣG (pn) < 0. It follows that

F0(Xn, pn,I(fn, xn),W (xn), xn) + U∗(pn) ≥ 0,

F0(Yn, qn,I(f̃n, yn), W̃ (yn), yn) + U∗(qn) ≤ 0.

Recall that U∗ is decreasing with respect to the partial ordering
generated by C∗ hence also by K ∗. Thus, U∗(pn) ≤ U∗(qn) and we
obtain the inequality

bn = F0(Xn, pn,I(fn, xn),W (xn), xn)−F0(Yn, qn,I(f̃n, yn), W̃ (yn), yn) ≥ 0
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Uniqueness Theorem for HJB. Idea of the proof, IV

Clearly,

bn =
1

2

d∑

i ,j=1

(aijx i
nx

j
nX

n
ij − aijy i

ny
j
nY

n
ij ) + n

d∑

i=1

µi (x i
n − y i

n)
2

−
1

2
βn|xn − yn|

2 − β∆n(xn, yn) + I(fn − εℓ, xn) − I(f̃n + εℓ, yn)

+ε(L0ℓ(xn) + L0ℓ(yn)).

The first term in the rhs is dominated by a constant multiplied by
n|xn − yn|

2 ; a similar bound for the second sum is obvious ; the last
term is negative according to the definition of the Lyapunov
function. To complete the proof, it remains to show that

lim sup
n

(I(fn − εℓ, xn) − I(f̃n + εℓ, yn)) ≤ 0.

Indeed, with this we have that lim sup bn ≤ −β∆̄ < 0.
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Uniqueness Theorem for HJB. Idea of the proof, V

Let

Fn(z) =
[
(fn − εℓ)(xn + diag xnz) − (fn − εℓ)(xn)

−diag xnz(f ′n − εℓ′)(xn)
]
I (z , xn),

F̃n(z) =
[
(f̃n + εℓ)(yn + diag ynz) − (f̃n + εℓ)(yn)

−diag ynz(f̃ ′n + εℓ′)(yn)
]
I (z , yn).

and Hn(z) = Fn(z) − F̃n(z) With this notation

I(fn − εℓ, xn) − I(f̃n + εℓ, yn) =

∫
Hn(z)Π(dz)

and the needed inequality will follow from the Fatou lemma if we
show that there is a constant C such that for all sufficiently large n

Hn(z) ≤ C (|z | ∧ |z |2) for all z ∈ K (1)

and
lim sup

n
Hn(z) ≤ 0 Π-a.s. (2)
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Uniqueness Theorem for HJB. Idea of the proof, VI

Using the properties of fn we get the bound :

Fn(z) ≤
[
(W − εℓ)(xn + diag xnz) − (W − εℓ)(xn)

−diag xnzn(xn − yn)
]
I (z , xn)

Since the continuous function W and l are of sublinear growth and
the sequences xn and n(xn − yn) are converging (hence bounded),
absolute value of the function in the right-hand side of this
inequality is dominated by a function c(1 + |z |). The arguments for
−F̃n(z) are similar. So, the function Hn is of sublinear growth.
We have the following identity :

Hn(z) = (∆n(xn + diag xnz, yn + diag ynz) − ∆n(xn, yn)

+(1/2)n|diag (xn − yn)z|
2)I (z, xn)I (z, yn)

+(fn(xn + diag xnz) − W (xn + diag xnz))I (z, xn)I (z, yn)

−(f̃n(yn + diag ynz) − W̃ (yn + diag ynz))I (z, xn)I (z, yn)

+Fn(z)(1 − I (z, yn)) − F̃n(z)(1 − I (z, xn)).
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Uniqueness Theorem for HJB. Idea of the proof, VII

The function ∆(x , y) attains its maximum at (xn, yn) and fn ≤ W ,
f̃n ≥ W̃ . It follows that

Hn(z) ≤ (1/2)n|xn−yn|
2|z |2+Fn(z)(1−I (z , yn))−F̃n(z)(1−I (z , xn)).

Let δ > 0 be the distance between x̂ from and ∂K . Then
xn, yn ∈ 0̧δ/2(x̂) for large n and, hence, the second and the third
terms in the rhs above are functions vanishing on O1(0). So, for
such n the function Hn is dominated from above on O1(0) by
cn|z |

2 where cn := (1/2)n|xn − yn|
2 → 0 as n → ∞. Therefore, (1)

holds. The relation (1) also holds because the second and the first
terms tends to zero (stationarily) for all z except the set
{z : x̂ + diag x̂z ∈ ∂K}. The coordinates of points of ∂K \ {0}
are non-zero. So this set is empty if x̂ has a zero coordinate. If all
components x̂ are nonzero, the operator x̂ is non-degenerated and
the set in question is of zero measure Π in virtue of our assumption.
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Lyapunov Functions, I

Let u ∈ C (R+) ∩ C 2(R+ \ {0}) be increasing strictly concave,
u(0) = 0, u(∞) = ∞. Define R = −u′2/(u′′u) and assume that
R̄ = supz>0 R(z) < ∞.
For p ∈ K ∗ \ {0} define the function f (x) = fp(x) := u(px). If
y ∈ K and x 6= 0, then yf ′(x) = (py)u′(px) ≤ 0. The inequality is
strict when p ∈ intK ∗.
Recall that Aij(x) = Aijx ix j and µi(x) = µix i . Suppose that
〈A(x)p, p〉 6= 0. Isolating the full square we get that L0f (x) is
equal to

1

2

[
〈A(x)p, p〉u′′(px) + 2〈µ(x), p〉u′(px) +

〈µ(x), p〉2

〈A(x)p, p〉

u′2(px)

u′′(px)

]

+
1

2

〈µ(x), p〉2

〈A(x)p, p〉
R(px)u(px) + I(f , x) − βu(px).

Note that

(f (x + diag xz)− f (x) − diag xzf ′(x)) = (1/2)u′′(...)(px)2 ≤ 0.
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Lyapunov Functions, II

It follows that L0f (x) ≤ 0 if β ≥ η(p)R̄ where

η(p) :=
1

2
sup
x∈K

〈µ(x), p〉2

〈A(x)p, p〉
.

If 〈A(x)p, p〉 = 0 and 〈µ(x), p〉 = 0, then L0f (x) = −βu(px) ≤ 0
for any β ≥ 0.

Proposition

Let p ∈ intK ∗. Suppose that 〈µ(x), p〉 vanishes on the set
{x ∈ intK : 〈A(x)p, p〉 = 0}. If β ≥ η(p)R̄ , then fp is a Lyapunov
function.
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Existence of Classical Supersolutions

The same ideas are useful also in the search of supersolutions.
Since Lf = L0f + U∗(f ′), it is natural to choose u related to U.
For the case where C = Rd

+ and U(c) = u(e1c), with u satisfying
the postulated properties and assuming, moreover, the inequality

u∗(au′(z)) ≤ g(a)u(z)

we get, using the homogeneity of L0, the following result.

Proposition

Assume 〈A(x)p, p〉 6= 0 for all x ∈ intK and p ∈ K ∗ \{0}. Suppose
that g(a) = o(a) as a → ∞. If β > η̄R̄, then there is a0 such that
for every a ≥ a0 the function afp is a classical supersolution of
HJB, whatever is p ∈ K ∗ with p1 6= 0. Moreover, if p ∈ intK ∗,
then afp is a strict supersolution on any compact subset of intK.
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Power Utility Function

For the power utility function u(z) = zγ/γ, γ ∈]0, 1[, we have :

R(z) = γ/(1 − γ) = R̄,

u∗(au′(z)) = (1 − γ)aγ/(γ−1)u(z) = g(a)u(z).

If A = diag σ, σ1 = 0, µ1 = 0 (the first asset is the numéraire) and
σi 6= 0 for i 6= 1, then, by the Cauchy–Schwarz inequality,

η(p) ≤
1

2

d∑

i=2

(
µi

σi

)2

.

The inequality

β >
γ

1 − γ

1

2

d∑

i=2

(
µi

σi

)2

(implying the bound β > η̄R̄) ensures the existence of a classical
supersolution.
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