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１．非平衡熱力学の数理モデル
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Summary
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Open questions

1. Real rate of blowup (for the case of sub-collapse collision) partial answer 
2. Any blowup point is of type II in the higher dimensional degenerate parabolic equation. 
3. Hausdorff dimension of the blowup set of the higher dimensional Smoluchowski

Poisson equation I less then or equal to (n-2).  partial answer 
4. Hamiltonian control of the blowup set is efficient to many elliptic problems. 
5. There is a general view of dynamics in the models associated with the Kuhn Tucker 

duality. 

1．Thermal equilibrium of the point vortex mean field is described by the Boltzmann Poisson 
equation. 
2．Onsager’s conjecture of the formation of an ordered structure in negative inverse temperature 
is realized as the Hamiltonian recurrence with quantized blowup mechanism. 
3．Smoluchowski Poisson equation is the fundamental equation for canonical ensembles of 
Newtonian particles. 
4．Its stationary state is the Boltzmann Poisson equation of which total set of solutions controls 
the global-in-time dynamics (potentials of self-organization). 
5. As a consequence there is a quantization with Hamiltonian control in blowup in finite and 
infinite time. 
6．If blowup in finite time occurs there is a formation of sub-collapses of normalized masses 
with a  possible collision. 
7．The residual part other than sub-collapses vanishes in the whole space of rescaled variables, 
called the parabolic envelope, while the motion of sub-collapses is controlled by the point vortex 
Hamiltonian in the rescaled variables.  
8. As a consequence any blowup point is of type II, and if the free energy is bounded then it is 
simple, whereby the local free energy in the parabolic envelope diverges to plus infinity 
(emergence). 
9. Blowup in infinite time, on the other hand, occurs only when the initial mass is quantized, 
whereby there is a formation of collapses with a normalized mass of which kinetics is subject to 
the anti-gradient system of Hamiltonian to create a clinic orbit of its critical points. 
10. A relative of the Smoluchowski-Poisson equation is the simplified system of chemotaxis, 
where the Poisson part is modified.  
11．The total set of stationary solutions, however, is quite different according to the form of the 
Poisson part. 
12．There is a dis-quantized blowup mechanism if the model is provided with the relaxation time, 
which is nothing but the model B – model A equation derived from the Lagrangian associated 
with the Toland duality. 
13. Several models in non-equilibrium thermo-dynamics are provided with the structure of semi-
unfolding-minimality between the Lagrangian and the field functional, which  induces a general 
criterion of the dynamical stability of the critical point if it is analytic. 
14. Higher dimensional analogous of the 2D Smoluchowski Poisson equation is a degenerate 
parabolic equation associated with the Tsallis entropy, where the finiteness of type II blowup 
points is known. 
15. It stationary state is realized as an elliptic free boundary problem provided with the quantized 
blowup mechanism controlled by the Hamiltonian.   
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統計集団と非平衡熱力学
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４．双対変分原理



自由エネルギー 場の汎関数
双対

粒子密度 ポテンシャル分布

双対変分原理

Fenchel-Moreau 双対

実バナッハ空間

ルジャンドル変換

Toland双対 ラグランジュ関数

適切, 凸, 下半連続

ミニマリティ

アンフォールディング

無限小安定（線形化安定より弱い）定常解は力学安定
非自明解析的非線形性のもとで極小臨界点は無限小安定

鈴木・田崎理論

非平衡熱力学モデルの多くはセミ・アンフォールディング・ミニマリティをもつ

相転移・相分離・記憶形状 Nonlinearity 2010

スモルコフスキー ポアソン

def



フォークモデル マルテンサイティック相転移（NiTi金属）

変位

温度

or

臨界温度

粘性項なし 分散系

線形部分

ブシネスク 熱

極大正則性ストリッカーツ評価

局所適切性と大域存在 Yoshikawa 05



熱力学的構造

エネルギー保存

エントロピー増大

Falk model



定常状態

constant associated with          by 

変分汎関数

定常状態



セミ・ミニマリティ

セミ・アンフォールディング

は力学系安定 S.-Yoshikawa 07

定義：無限小安定



実解析性

すべての極小は無限小安定
鈴木・田崎理論

分岐解析

極小の多重存在



気体分子の動力学



t=s

t=t

圧縮性オイラー方程式



カイネティック形式（ぺルタム） ハミルトン形式

渦なし流の有限時間消滅


