Thou Shalt *Still* Buy and Hold

Xunyu Zhou/Oxford

3rd September 2008/Kyoto
This Talk Based on ...

Merton’s model
Classical Continuous-Time Portfolio Selection Models

- Merton’s model
- Markowitz’s model
Classical Continuous-Time Portfolio Selection Models

- Merton’s model
- Markowitz’s model
- Behavioral model (recently)
Classical Continuous-Time Portfolio Selection Models

- Merton’s model
- Markowitz’s model
- Behavioral model (recently)
- No transaction costs
Classical Continuous-Time Portfolio Selection Models

- Merton’s model
- Markowitz’s model
- Behavioral model (recently)
- No transaction costs
- Optimal portfolios are to “trade all the time” so as to keep certain “constant proportions”
“Continuous Trading” clearly incurs infinite costs
Portfolio Selection with Transaction Costs

- “Continuous Trading” clearly incurs infinite costs
- In the presence of transaction costs: sell region, buy region and no trade region
Portfolio Selection with Transaction Costs

- “Continuous Trading” clearly incurs infinite costs
- In the presence of transaction costs: sell region, buy region and no trade region
- Trade only necessary
“Continuous Trading” clearly incurs infinite costs
- In the presence of transaction costs: sell region, buy region and no trade region
- Trade only necessary
- Liu and Loewenstein (2002), *Rev Fin Studies*, CRRA investor, transaction costs and finite horizon
Portfolio Selection with Transaction Costs

- “Continuous Trading” clearly incurs infinite costs
- In the presence of transaction costs: sell region, buy region and no trade region
- Trade only necessary
- Liu and Loewenstein (2002), *Rev Fin Studies*, CRRA investor, transaction costs and finite horizon
 - An investor might optimally *never* buy stock if the horizon is short
“Continuous Trading” clearly incurs infinite costs

In the presence of transaction costs: sell region, buy region and no trade region

Trade only necessary

Liu and Loewenstein (2002), *Rev Fin Studies*, CRRA investor, transaction costs and finite horizon

- An investor might optimally *never* buy stock if the horizon is short
- An investor should *largely* buy and hold if the horizon is long
Conventional Wisdom: Buy and Hold

- Buy and Hold: Buy a *good* stock and leave it alone for long time
Conventional Wisdom: Buy and Hold

- Buy and Hold: Buy a *good* stock and leave it alone for long time
 - “Never sell a security unless you need money”
 (EfficientMarket.ca)
Conventional Wisdom: Buy and Hold

- Buy and Hold: Buy a *good* stock and leave it alone for long time
 - “Never sell a security unless you need money” (EfficientMarket.ca)
 - “Trading is hazardous to your wealth” (Barber and Odean, 2000, *J Fin*)
Conventional Wisdom: Buy and Hold

- Buy and Hold: Buy a *good* stock and leave it alone for a long time
 - “Never sell a security unless you need money” (EfficientMarket.ca)
 - “Trading is hazardous to your wealth” (Barber and Odean, 2000, *J Fin*)

- Grounds
Conventional Wisdom: Buy and Hold

- Buy and Hold: Buy a *good* stock and leave it alone for long time
 - “Never sell a security unless you need money” (EfficientMarket.ca)
 - “Trading is hazardous to your wealth” (Barber and Odean, 2000, *J Fin*)

- Grounds
 - Efficient market hypothesis (EMH): every security is fairly valued at all times, so there is no point to trade (you trade because something happens to *you*, not because something happens to the *market*)
Conventional Wisdom: Buy and Hold

- Buy and Hold: Buy a *good* stock and leave it alone for long time
 - “Never sell a security unless you need money” (EfficientMarket.ca)
 - “Trading is hazardous to your wealth” (Barber and Odean, 2000, *J Fin*)

- Grounds
 - Efficient market hypothesis (EMH): every security is fairly valued at all times, so there is no point to trade (you trade because something happens to *you*, not because something happens to the *market*)
 - Pure costs: bid/offer spread, brokerage, capital gain tax etc. (Warren Buffett is a buy-and-hold advocate rejecting EMH)
Conventional Wisdom: Buy and Hold

- Buy and Hold: Buy a *good* stock and leave it alone for long time
 - “Never sell a security unless you need money” (EfficientMarket.ca)
 - “Trading is hazardous to your wealth” (Barber and Odean, 2000, *J Fin*)

- Grounds
 - Efficient market hypothesis (EMH): every security is fairly valued at all times, so there is no point to trade (you trade because something happens to you, not because something happens to the market)
 - Pure costs: bid/offer spread, brokerage, capital gain tax etc. (Warren Buffett is a buy-and-hold advocate rejecting EMH)

- However, no well-established portfolio models produced *pure* buy-and-hold strategy
If I Were an Innocent Investor ...

- Let’s say I just bought a stock, and *must* sell it in one year
If I Were an Innocent Investor ...

- Let’s say I just bought a stock, and *must* sell it in one year.
- Need to decide when to sell.
If I Were an Innocent Investor ...

- Let’s say I just bought a stock, and *must* sell it in one year
- Need to decide when to sell
- Criterion?
Let’s say I just bought a stock, and *must* sell it in one year
- Need to decide when to sell
- Criterion?
 - Mean-Variance? Expected utility?
Let’s say I just bought a stock, and *must* sell it in one year
- Need to decide when to sell
- Criterion?
 - Mean-Variance? Expected utility? *I don’t know what you are talking about*
Let’s say I just bought a stock, and \textit{must} sell it in one year.

Need to decide when to sell.

Criterion?

- Mean-Variance? Expected utility? \textit{I don’t know what you are talking about}
- Let’s sell higher ...
Let’s say I just bought a stock, and *must* sell it in one year.

Need to decide when to sell.

Criterion?

- Mean-Variance? Expected utility? *I don’t know what you are talking about*?

- Let’s sell higher ... say, *at the maximum price*?
Let’s say I just bought a stock, and *must* sell it in one year

Need to decide when to sell

Criterion?

- Mean-Variance? Expected utility? *I don’t know what you are talking about*
- Let’s sell higher ... say, *at the maximum price*?

- Selling at the maximum price is a “mission impossible”
If I Were an Innocent Investor ...

- Let’s say I just bought a stock, and *must* sell it in one year
- Need to decide when to sell
- Criterion?
 - Mean-Variance? Expected utility? *I don’t know what you are talking about*
 - Let’s sell higher ... say, *at the maximum price?*
- Selling at the maximum price is a “mission impossible”
- How about selling at the price closest to the maximum?
Let’s say I just bought a stock, and must sell it in one year:

- Need to decide when to sell
- Criterion?
 - Mean-Variance? Expected utility? *I don’t know what you are talking about*
 - Let’s sell higher ... say, at the maximum price?

Selling at the maximum price is a “mission impossible”

- How about selling at the price closest to the maximum?
- ...or sell at the time when the expected relative error between the current price and the maximum price is minimised
The Model

- A Black–Scholes market with a stock and a saving account
The Model

- A Black–Scholes market with a stock and a saving account
- The discounted stock price follows, on \((\Omega, F, P)\):

\[
dP_t = (a - r)P_t dt + \sigma P_t dB_t, \quad \text{or} \quad P_t = e^{\mu t + \sigma B_t}
\]

where \(\mu = a - r - \frac{1}{2} \sigma^2\)
A Black–Scholes market with a stock and a saving account

The *discounted* stock price follows, on (Ω, \mathcal{F}, P):

$$dP_t = (a - r)P_t dt + \sigma P_t dB_t,$$

or

$$P_t = e^{\mu t + \sigma B_t},$$

where $\mu = a - r - \frac{1}{2} \sigma^2$

Let $M_t = \max_{0 \leq s \leq t} P_s$, $0 \leq t \leq T$
The Model

- A Black–Scholes market with a stock and a saving account
- The discounted stock price follows, on $\left(\Omega, \mathcal{F}, P \right)$:

$$dP_t = (a - r) P_t dt + \sigma P_t dB_t, \quad \text{or} \quad P_t = e^{\mu t + \sigma B_t}$$

where $\mu = a - r - \frac{1}{2} \sigma^2$
- Let $M_t = \max_{0 \leq s \leq t} P_s, \ 0 \leq t \leq T$
- Consider the following optimal stopping problem

$$\min_{0 \leq \tau \leq T} E \left[\frac{M_T - P_{\tau}}{M_T} \right]$$

where $\tau \in [0, T]$ is a $\{ B_t \}$-stopping time
The Model

- A Black–Scholes market with a stock and a saving account
- The discounted stock price follows, on (Ω, \mathcal{F}, P):

$$dP_t = (a - r)P_t dt + \sigma P_t dB_t, \quad \text{or} \quad P_t = e^{\mu t + \sigma B_t}$$

where $\mu = a - r - \frac{1}{2} \sigma^2$

- Let $M_t = \max_{0 \leq s \leq t} P_s, \ 0 \leq t \leq T$
- Consider the following optimal stopping problem

$$\min_{0 \leq \tau \leq T} \mathbb{E} \left[\frac{M_T - P_\tau}{M_T} \right]$$

where $\tau \in [0, T]$ is a $\{B_t\}$-stopping time

- ... or equivalently

$$\max_{0 \leq \tau \leq T} \mathbb{E} \left[\frac{P_\tau}{M_T} \right]$$

\[
\min_{0 \leq \tau \leq T} E(B^0_\tau - S^0_T)^2
\]

where \(S^0_t := \max_{0 \leq s \leq t} B^0_s \), and obtained optimal

\[
\tau^* = \inf \left\{ 0 \leq t \leq T \left| \frac{S^0_t - B^0_t}{\sqrt{T - t}} \geq z^* \right. \right\}
\]

where \(z^* = 1.12... \)
Related (Probabilistic) Literature

\[
\min_{0 \leq \tau \leq T} E(B^0_{\tau} - S^0_T)^2
\]

where \(S^0_t := \max_{0 \leq s \leq t} B^0_s \), and obtained optimal

\[
\tau^* = \inf \left\{ 0 \leq t \leq T \left| \frac{S^0_t - B^0_t}{\sqrt{T-t}} \geq z^* \right. \right\}
\]

where \(z^* = 1.12 \ldots \)

- Pedersen (2003), *Stoch Stoch Rep*, considered

\[
\min_{0 \leq \tau \leq T} E|B^0_{\tau} - S^0_T|^p, \quad 0 \leq p < +\infty
\]
Assume $\sigma = 1$ (otherwise rescale the time)
Assume $\sigma = 1$ (otherwise rescale the time)

Rewrite $B_t^\mu = \mu t + B_t$, $S_t^\mu = \max_{0 \leq s \leq t} B_s^\mu$, $0 \leq t \leq T$
Assume $\sigma = 1$ (otherwise rescale the time)

Rewrite $B_t^\mu = \mu t + B_t$, $S_t^\mu = \max_{0 \leq s \leq t} B_s^\mu$, $0 \leq t \leq T$

The problem is

$$\max_{0 \leq \tau \leq T} E \left[\frac{e^{B_\tau^\mu}}{e^{S_T^\mu}} \right]$$
The Model Rewritten

- Assume $\sigma = 1$ (otherwise rescale the time)
- Rewrite $B^\mu_t = \mu t + B_t$, $S^\mu_t = \max_{0 \leq s \leq t} B^\mu_s$, $0 \leq t \leq T$
- The problem is
 \[
 \max_{0 \leq \tau \leq T} E \left[\frac{e^{B^\mu_\tau}}{e^{S^\mu_T}} \right]
 \]
- Not a standard optimal stopping problem: S^μ_T is not B_t-adapted!
For any $\{B_t\}$-stopping time $0 \leq \tau \leq T$, we have

$$E \left[\frac{e^{B_\tau^\mu}}{e^{S_T^\mu}} \right] = E \left[\frac{e^{B_\tau^\mu}}{\max\{e^{S_\tau^\mu}, e^{\max_{\tau \leq t \leq T} B_t^\mu}\}} \right]$$
For any \(\{B_t\} \)-stopping time \(0 \leq \tau \leq T \), we have

\[
E \left[\frac{e^{B^\mu_\tau}}{e^{S^\mu_T}} \right] = E \left[\frac{e^{B^\mu_\tau}}{\max\{e^{S^\mu_\tau}, e^{\max_{\tau \leq t \leq T} B^\mu_t}\}} \right]
\]

\[
= E \left[\min \left\{ e^{-(S^\mu_\tau - B^\mu_\tau)}, e^{-\max_{\tau \leq t \leq T} (B^\mu_t - B^\mu_\tau)} \right\} \right]
\]
For any \(\{B_t\} \)-stopping time \(0 \leq \tau \leq T \), we have

\[
E \left[\frac{e^{B_\tau^\mu}}{e^{S_\tau^\mu}} \right] = E \left[\frac{e^{B_\tau^\mu}}{\max\{e^{S_\tau^\mu}, e^{\max_{\tau \leq t \leq T} B_t^\mu}\}} \right] = E \left[\min \left\{ e^{-(S_\tau^\mu - B_\tau^\mu)}, e^{-\max_{\tau \leq t \leq T} (B_t^\mu - B_\tau^\mu)} \right\} \right] = E \left[E \left[\min \left\{ e^{-(S_\tau^\mu - B_\tau^\mu)}, e^{-\max_{\tau \leq t \leq T} (B_t^\mu - B_\tau^\mu)} \right\} \bigg| \mathcal{F}_\tau \right] \right]
\]
For any \(\{ B_t \} \)-stopping time \(0 \leq \tau \leq T \), we have

\[
E \left[\frac{e^{B_{\tau}}}{e^{S_{T}}} \right] = E \left[\frac{e^{B_{\tau}}}{\max\{e^{S_{\tau}}, e^{\max_{\tau \leq t \leq T} B_{t}}\}} \right]
\]

\[
= E \left[\min \left\{ e^{-(S_{\tau} - B_{\tau})}, e^{-\max_{\tau \leq t \leq T} (B_{t} - B_{\tau})} \right\} \right]
\]

\[
= E \left[E \left[\min \left\{ e^{-(S_{\tau} - B_{\tau})}, e^{-\max_{\tau \leq t \leq T} (B_{t} - B_{\tau})} \right\} \bigg| \mathcal{F}_{\tau} \right] \right]
\]

\[
= E \left[E \left[\min \left\{ e^{-x}, e^{-S_{T-\tau}} \right\} \bigg| x = S_{\tau} - B_{\tau} \right] \right]
\]
For any \(\{B_t\} \)-stopping time \(0 \leq \tau \leq T \), we have

\[
E \left[\frac{e^{B^\mu_\tau}}{e^{S^\mu_T}} \right] = E \left[\frac{e^{B^\mu_\tau}}{\max \{e^{S^\mu_\tau}, e^{\max_{\tau \leq t \leq T} B^\mu_t} \}} \right]
\]

\[
= E \left[\min \left\{ e^{-(S^\mu_\tau - B^\mu_\tau)}, e^{-\max_{\tau \leq t \leq T} (B^\mu_t - B^\mu_\tau)} \right\} \right]
\]

\[
= E \left[E \left[\min \left\{ e^{-(S^\mu_\tau - B^\mu_\tau)}, e^{-\max_{\tau \leq t \leq T} (B^\mu_t - B^\mu_\tau)} \right\} \mid \mathcal{F}_\tau \right] \right]
\]

\[
= E \left[E \left[\min \left\{ e^{-x}, e^{-S^\mu_T - \tau} \right\} \mid x = S^\mu_\tau - B^\mu_\tau \right] \right]
\]

\[
= E \left[G(\tau, X_\tau) \right]
\]

where \(G(t, x) = E \left[\min \left\{ e^{-x}, e^{-S^\mu_T - t} \right\} \right], X_t = S^\mu_t - B^\mu_t \).
For any \(\{B_t\} \)-stopping time \(0 \leq \tau \leq T \), we have

\[
E \left[\frac{e^{B_\tau^\mu}}{e^{S_{T^\mu}}} \right] = E \left[\frac{e^{B_\tau^\mu}}{\max \{e^{S_{\tau}^\mu}, e^{\max_{\tau \leq t \leq T} B_t^\mu} \}} \right]
\]

\[
= E \left[\min \left\{ e^{-(S_{\tau}^\mu - B_\tau^\mu)}, e^{- \max_{\tau \leq t \leq T} (B_t^\mu - B_\tau^\mu)} \right\} \right]
\]

\[
= E \left[E \left[\min \left\{ e^{-(S_{\tau}^\mu - B_\tau^\mu)}, e^{- \max_{\tau \leq t \leq T} (B_t^\mu - B_\tau^\mu)} \right\} \right| \mathcal{F}_{\tau} \right]
\]

\[
= E \left[E \left[\min \left\{ e^{-x}, e^{-S_{T-\tau}^\mu} \right\} \right| x = S_{\tau}^\mu - B_\tau^\mu \right]
\]

\[
= E \left[G(\tau, X_\tau) \right]
\]

where \(G(t, x) = E \left[\min \left\{ e^{-x}, e^{-S_{T-t}^\mu} \right\} \right] \), \(X_t = S_t^\mu - B_t^\mu \)

\(X_t \) – drawdown process – is \(B_t \)-adapted!
Function G

Assuming $\mu \neq \frac{1}{2}$, then

$$G(t, x) = \frac{2(\mu - 1)}{2\mu - 1} e^{-(\mu - \frac{1}{2})(T-t)} \Phi \left(\frac{-x + (\mu - 1)(T-t)}{\sqrt{T-t}} \right)$$

$$+ \frac{1}{2\mu - 1} e^{-(1-2\mu)x} \Phi \left(\frac{-x - \mu(T-t)}{\sqrt{T-t}} \right)$$

$$+ e^{-x} \Phi \left(\frac{x - \mu(T-t)}{\sqrt{T-t}} \right),$$

where Φ is the CDF of standard normal distribution.
Function G

- Assuming $\mu \neq \frac{1}{2}$, then

$$G(t, x) = \frac{2(\mu - 1)}{2\mu - 1} e^{-(\mu - \frac{1}{2})(T-t)} \Phi \left(\frac{-x + (\mu - 1)(T-t)}{\sqrt{T-t}} \right)$$

$$+ \frac{1}{2\mu - 1} e^{-(1-2\mu)x} \Phi \left(\frac{-x - \mu(T-t)}{\sqrt{T-t}} \right)$$

$$+ e^{-x} \Phi \left(\frac{x - \mu(T-t)}{\sqrt{T-t}} \right),$$

where Φ is the CDF of standard normal distribution

- If $\mu = \frac{1}{2}$, then G has a different (explicit) expression.
Define \(X_{t+s}^x = x \vee S_s^\mu - B_s^\mu, \ s \geq 0 \)
Define $X^x_{t+s} = x \lor S^\mu_s - B^\mu_s, \ s \geq 0$

X^x_{t+s} is Markovian under $P, \ \forall (t, x)$
Dynamic Programming

- Define \(X_{t+s}^x = x \lor S_s^\mu - B_s^\mu, \ s \geq 0 \)
- \(X_t^x \) is Markovian under \(P, \ \forall (t, x) \)
- Value function

\[
V(t, x) = \sup_{0 \leq \tau \leq T-t} E \left[G(t + \tau, X_{t+\tau}^x) \right]
\]
Dynamic Programming

- Define $X_{t+s}^x = x \lor S_s^\mu - B_s^\mu$, $s \geq 0$
- X_t^x is Markovian under P, $\forall(t, x)$
- Value function
 \[V(t, x) = \sup_{0 \leq \tau \leq T-t} E \left[G(t + \tau, X_{t+\tau}^x) \right] \]
- In particular
 \[V(0, 0) = \sup_{0 \leq \tau \leq T} E \left[\frac{e^{B_\tau^\mu}}{e^{S_{T}^{\mu}}} \right] \]
Variational Inequalities

Dynamic programming equation (Variational Inequalities)

\[
\min\{-\mathcal{L}V, V - G\} = 0, \quad (t, x) \in [0, T) \times (0, \infty) \tag{1}
\]

\[
V(T, x) = G(T, x), \quad x \in (0, \infty) \tag{2}
\]

\[
V_x(t, 0+) = 0, \quad t \in [0, T) \text{ (normal reflection)} \tag{3}
\]

where

\[
\mathcal{L}V = V_t - \mu V_x + \frac{1}{2} V_{xx} \tag{4}
\]
Holding and Selling Region

Holding region

\[C = \{(t, x) \in [0, T] \times [0, \infty) : V(t, x) > G(t, x)\} \]
Holding and Selling Region

- Holding region

\[C = \{(t, x) \in [0, T] \times [0, \infty) : V(t, x) > G(t, x)\} \]

- Selling region

\[D = \{(t, x) \in [0, T] \times [0, \infty) : V(t, x) = G(t, x)\} \]
Holding and Selling Region

- **Holding region**

\[C = \{(t, x) \in [0, T] \times [0, \infty) : V(t, x) > G(t, x)\} \]

- **Selling region**

\[D = \{(t, x) \in [0, T] \times [0, \infty) : V(t, x) = G(t, x)\} \]

- An optimal selling time is

\[\tau^* = \inf\{t \in [0, T] : (t, S^\mu_t - B^\mu_t) \in D\} \]
Holding and Selling Region

- Holding region
 \[C = \{(t, x) \in [0, T] \times [0, \infty) : V(t, x) > G(t, x)\} \]

- Selling region
 \[D = \{(t, x) \in [0, T] \times [0, \infty) : V(t, x) = G(t, x)\} \]

- An optimal selling time is
 \[\tau^* = \inf \{t \in [0, T] : (t, S_t^\mu - B_t^\mu) \in D\} \]

- So it boils down to finding \(V \) - which is hard
To get around: turn *terminal* payoff into *running* payoff
To get around: turn *terminal* payoff into *running* payoff

\[X_{t+}^x = |Y_t| \text{ in law, where} \]

\[dY_t = -\mu \text{sign}(Y_t) dt + dB_t, \quad Y_0 = x \]
Optimal Stopping with Running Payoff

- To get around: turn \textit{terminal} payoff into \textit{running} payoff
- $X_{t^+}^x = |Y|$ in law, where

$$dY_t = -\mu \text{sign}(Y_t)dt + dB_t, \quad Y_0 = x$$

- By Tanaka’s formula

$$|Y_s| = x - \mu \int_0^s I(Y_u \neq 0)du + \int_0^s \text{sign}(Y_u)I(Y_u \neq 0)dB_u + \ell^0_s(Y)$$
Itô’s formula then implies

\[G(t + s, X^x_{t+s}) = G(t, x) + \int_0^s H(t + u, X^x_{t+u})du + M_s \]

provided that \(G_x(t, 0+) = 0 \) (so as to kill the local time term), where \(M \) is a martingale and

\[H(t, x) = \mathcal{L}G(t, x) = G_t(t, x) - \mu G_x(t, x) + \frac{1}{2} G_{xx}(t, x) \]
Itô’s formula then implies

\[G(t + s, X_{t+s}^x) = G(t, x) + \int_0^s H(t + u, X_{t+u}^x) du + M_s \]

provided that \(G_x(t, 0+) = 0 \) (so as to kill the local time term), where \(M \) is a martingale and

\[H(t, x) = \mathcal{L}G(t, x) = G_t(t, x) - \mu G_x(t, x) + \frac{1}{2} G_{xx}(t, x) \]

Hence

\[V(t, x) = G(t, x) + \sup_{0 \leq \tau \leq T-t} E \left[\int_0^\tau H(t + u, X_{t+u}^x) du \right] \]
Optimal Stopping with Running Payoff (Cont’d)

- Itô’s formula then implies

\[G(t + s, X_{t+s}^x) = G(t, x) + \int_0^s H(t + u, X_{t+u}^x)\,du + M_s \]

provided that \(G_x(t, 0+) = 0 \) (so as to kill the local time term), where \(M \) is a martingale and

\[H(t, x) = \mathcal{L}G(t, x) = G_t(t, x) - \mu G_x(t, x) + \frac{1}{2} G_{xx}(t, x) \]

- Hence

\[V(t, x) = G(t, x) + \sup_{0 \leq \tau \leq T-t} E \left[\int_0^\tau H(t + u, X_{t+u}^x)\,du \right] \]

- Need to calculate \(H \) and show \(G_x(t, 0+) = 0 \)
Function \(H \)

Write \(G(t, x) = \frac{2(\mu-1)}{2\mu-1} A(t, x) + \frac{1}{2\mu-1} B(t, x) + C(t, x) \) where

\[
A = e^{-(\mu - \frac{1}{2})(T-t)} \Phi \left(\frac{-x + (\mu - 1)(T - t)}{\sqrt{T - t}} \right)
\]

\[
B = e^{-(1-2\mu)x} \Phi \left(\frac{-x - \mu(T - t)}{\sqrt{T - t}} \right)
\]

\[
C = e^{-x} \Phi \left(\frac{x - \mu(T - t)}{\sqrt{T - t}} \right)
\]
Function H

- Write $G(t, x) = \frac{2(\mu - 1)}{2\mu - 1} A(t, x) + \frac{1}{2\mu - 1} B(t, x) + C(t, x)$ where

 \[
 A = e^{-(\mu - \frac{1}{2})(T-t)} \Phi \left(\frac{-x + (\mu - 1)(T-t)}{\sqrt{T-t}} \right)

 B = e^{-(1-2\mu)x} \Phi \left(\frac{-x - \mu(T-t)}{\sqrt{T-t}} \right)

 C = e^{-x} \Phi \left(\frac{x - \mu(T-t)}{\sqrt{T-t}} \right)
 \]

- Lengthy calculations show for $\varphi = A, B, C$,

 \[
 \mathcal{L}\varphi = (\mu - \frac{1}{2})\varphi - \varphi x
 \]
Function H

- Write $G(t, x) = \frac{2(\mu - 1)}{2\mu - 1} A(t, x) + \frac{1}{2\mu - 1} B(t, x) + C(t, x)$ where

 $$
 A = e^{-(\mu - \frac{1}{2})(T-t)} \Phi \left(\frac{-x + (\mu - 1)(T - t)}{\sqrt{T - t}} \right)
 $$

 $$
 B = e^{-(1 - 2\mu)x} \Phi \left(\frac{-x - \mu(T - t)}{\sqrt{T - t}} \right)
 $$

 $$
 C = e^{-x} \Phi \left(\frac{x - \mu(T - t)}{\sqrt{T - t}} \right)
 $$

- Lengthy calculations show for $\varphi = A, B, C,$

 $$
 \mathcal{L} \varphi = (\mu - \frac{1}{2})\varphi - \varphi x
 $$

- Hence $H = \mathcal{L} G = (\mu - \frac{1}{2})G - G_x$
Function H

Write $G(t, x) = \frac{2(\mu - 1)}{2\mu - 1} A(t, x) + \frac{1}{2\mu - 1} B(t, x) + C(t, x)$ where

$$A = e^{-(\mu - \frac{1}{2})(T-t)} \Phi \left(\frac{-x + (\mu - 1)(T-t)}{\sqrt{T-t}} \right)$$

$$B = e^{- (1 - 2\mu)x} \Phi \left(\frac{-x - \mu(T-t)}{\sqrt{T-t}} \right)$$

$$C = e^{-x} \Phi \left(\frac{x - \mu(T-t)}{\sqrt{T-t}} \right)$$

Lengthy calculations show for $\varphi = A, B, C$,

$$\mathcal{L}\varphi = (\mu - \frac{1}{2})\varphi - \varphi_x$$

Hence $H = \mathcal{L}G = (\mu - \frac{1}{2})G - G_x$

Moreover $G_x = B - C$
Function H

- Write $G(t, x) = \frac{2(\mu-1)}{2\mu-1} A(t, x) + \frac{1}{2\mu-1} B(t, x) + C(t, x)$ where

 \[A = e^{-(\mu-\frac{1}{2})(T-t)} \Phi \left(\frac{-x + (\mu - 1)(T - t)}{\sqrt{T - t}} \right) \]

 \[B = e^{-(1-2\mu)x} \Phi \left(\frac{-x - \mu(T - t)}{\sqrt{T - t}} \right) \]

 \[C = e^{-x} \Phi \left(\frac{x - \mu(T - t)}{\sqrt{T - t}} \right) \]

- Lengthy calculations show for $\varphi = A, B, C$,

 \[\mathcal{L}\varphi = (\mu - \frac{1}{2})\varphi - \varphi x \]

- Hence $H = \mathcal{L}G = (\mu - \frac{1}{2})G - G_x$

- Moreover $G_x = B - C$

- So $G_x(t, 0+) = B(t, 0+) - C(t, 0+) = 0$
The Good…

- If $\mu \geq \frac{1}{2}$:
If $\mu \geq \frac{1}{2}$:

- $G_x \leq 0$ by the definition $G(t, x) = E\left[\min\left\{e^{-x}, e^{-S^\mu_{T-t}}\right\}\right]$
If $\mu \geq \frac{1}{2}$:

- $G_x \leq 0$ by the definition $G(t, x) = E \left[\min \left\{ e^{-x}, e^{-S_T^\mu \cdot t} \right\} \right]$
- $H = (\mu - \frac{1}{2})G - G_x \geq 0$
If $\mu \geq \frac{1}{2}$:

- $G_x \leq 0$ by the definition $G(t, x) = E \left[\min \{ e^{-x}, e^{-S_{T-t}^\mu} \} \right]$
- $H = (\mu - \frac{1}{2})G - G_x \geq 0$
- So the optimal $\tau^* = T$
If $\mu \geq \frac{1}{2}$:

- $G_x \leq 0$ by the definition $G(t, x) = E \left[\min \{ e^{-x}, e^{-S_{T-t}^\mu} \} \right]$.
- $H = (\mu - \frac{1}{2})G - G_x \geq 0$.
- So the optimal $\tau^* = T$.
- The stock is “good”.
... and The Bad

- If $\mu \leq -\frac{1}{2}$:
If $\mu \leq -\frac{1}{2}$:

$$e^x G(t, x) = E \left[\min \left\{ 1, e^{-S_T^\mu - t + x} \right\} \right]$$
... and The Bad

- If $\mu \leq -\frac{1}{2}$:

 - $e^x G(t, x) = E \left[\min \left\{ 1, e^{-S_T^\mu - t + x} \right\} \right]$

 - $\frac{\partial (e^x G)}{\partial x} \geq 0$ so $e^x (G_x + G) \geq 0$ or $G_x + G \geq 0$
If $\mu \leq -\frac{1}{2}$:

- $e^x G(t, x) = E \left[\min \left\{ 1, e^{-S^\mu_{T-t} + x} \right\} \right]$
- $\frac{\partial(e^x G)}{\partial x} \geq 0$ so $e^x (G_x + G) \geq 0$ or $G_x + G \geq 0$
- $H = (\mu - \frac{1}{2})G - G_x = (\mu + \frac{1}{2})G - (G_x + G) \leq 0$
... and The Bad

- If $\mu \leq -\frac{1}{2}$:

 - $e^x G(t, x) = E\left[\min\{1, e^{-S_{T-t}\mu}+x}\right]

 - $\frac{\partial (e^x G)}{\partial x} \geq 0$ so $e^x (G_x + G) \geq 0$ or $G_x + G \geq 0$

 - $H = (\mu - \frac{1}{2})G - G_x = (\mu + \frac{1}{2})G - (G_x + G) \leq 0$

 - So the optimal $\tau^* = 0$
... and The Bad

- If $\mu \leq -\frac{1}{2}$:

 - $e^x G(t, x) = E \left[\min \left\{ 1, e^{-S_{T-t}^\mu + x} \right\} \right]$

 - $\frac{\partial (e^x G)}{\partial x} \geq 0$ so $e^x (G_x + G) \geq 0$ or $G_x + G \geq 0$

 - $H = (\mu - \frac{1}{2}) G - G_x = (\mu + \frac{1}{2}) G - (G_x + G) \leq 0$

 - So the optimal $\tau^* = 0$

 - The stock is “bad”
Finding More Good Guys

- If $\mu = 0$:

$$V(t, x) \geq E_{t,x}[G(T, X^x_T)] > G(t, x), \quad \forall t \in [0, T), \quad x > 0$$
If $\mu = 0$:

\[V(t, x) \geq E_{t,x}[G(T, X_T^x)] > G(t, x), \quad \forall \ t \in [0, T), \quad x > 0 \]

On the other hand $\forall \mu \in \mathbb{R}$:

\[
\frac{\partial}{\partial \mu} \left\{ e^{\frac{1}{2} \mu^2 (T-t)} \left(E_{t,x}[G(T, X_T^x)] - G(t, x) \right) \right\} > 0
\]
Finding More Good Guys

- If \(\mu = 0 \):

\[
V(t, x) \geq E_{t,x}[G(T, X^x_T)] > G(t, x), \quad \forall \ t \in [0, T), \quad x > 0
\]

- On the other hand \(\forall \mu \in \mathbb{R} \):

\[
\frac{\partial}{\partial \mu} \left\{ e^{\frac{1}{2} \mu^2(T-t)} \left(E_{t,x}[G(T, X^x_T)] - G(t, x) \right) \right\} > 0
\]

- Hence \(\forall \mu > 0 \):

If $\mu = 0$:

$$V(t, x) \geq E_{t,x}[G(T, X^x_T)] > G(t, x), \quad \forall t \in [0, T), \quad x > 0$$

On the other hand $\forall \mu \in \mathbb{R}$:

$$\frac{\partial}{\partial \mu} \left\{ e^{\frac{1}{2} \mu^2 (T-t)} (E_{t,x}[G(T, X^x_T)] - G(t, x)) \right\} > 0$$

Hence $\forall \mu > 0$:

$$V(t, x) \geq E_{t,x}[G(T, X^x_T)] > G(t, x), \quad \forall t \in [0, T), \quad x \geq 0$$
Finding More Good Guys

- If \(\mu = 0 \):
 \[
 V(t, x) \geq E_{t,x}[G(T, X_T^x)] > G(t, x), \quad \forall \ t \in [0, T), \quad x > 0
 \]

- On the other hand \(\forall \mu \in \mathbb{R} \):
 \[
 \frac{\partial}{\partial \mu} \left\{ e^{\frac{1}{2} \mu^2 (T-t)} \left(E_{t,x}[G(T, X_T^x)] - G(t, x) \right) \right\} > 0
 \]

- Hence \(\forall \mu > 0 \):
 - \(V(t, x) \geq E_{t,x}[G(T, X_T^x)] > G(t, x), \quad \forall \ t \in [0, T), \quad x \geq 0 \)
 - So the optimal \(\tau^* = T \)
Finding More Good Guys

- If $\mu = 0$:

 $$V(t, x) \geq E_{t,x}[G(T, X^x_T)] > G(t, x), \quad \forall \ t \in [0, T), \quad x > 0$$

- On the other hand $\forall \mu \in \mathbb{R}$:

 $$\frac{\partial}{\partial \mu}\left\{ e^{\frac{1}{2} \mu^2 (T-t)} \left(E_{t,x}[G(T, X^x_T)] - G(t, x) \right) \right\} > 0$$

- Hence $\forall \mu > 0$:

 - $V(t, x) \geq E_{t,x}[G(T, X^x_T)] > G(t, x), \quad \forall \ t \in [0, T), \quad x \geq 0$
 - So the optimal $\tau^* = T$
 - The stock is “good”
Define a *goodness index* of the stock

\[\alpha = \frac{a - r}{\sigma^2} \]
Define a *goodness index* of the stock

\[\alpha = \frac{a - r}{\sigma^2} \]

Theorem

(Shiryaev, Xu and Zhou, *Quantitative Finance* 2008) *Optimal selling time* \(\tau^* = T \) if \(\alpha \geq 0.5 \), and \(\tau^* = 0 \) if \(\alpha \leq 0 \)
Define a *goodness index* of the stock

\[\alpha = \frac{a - r}{\sigma^2} \]

Theorem

(Shiryaev, Xu and Zhou, *Quantitative Finance* 2008) *Optimal selling time* \(\tau^* = T \) if \(\alpha \geq 0.5 \), and \(\tau^* = 0 \) if \(\alpha \leq 0 \).

Theorem

(Dai, Jin, and Zhou 2008) *Optimal selling time* \(\tau^* = T \) if \(\alpha \geq 0.5 \), and \(\tau^* = 0 \) if \(\alpha < 0.5 \).
Let $P_t = e^{\mu t + \sigma B_t}$, $M_t = \max_{0 \leq s \leq t} P_s$

Assume $\alpha \geq 0.5$
Optimal Relative Error - Good Stock

Let \(P_t = e^{\mu t + \sigma B_t} \), \(M_t = \max_{0 \leq s \leq t} P_s \)

Assume \(\alpha \geq 0.5 \)

Optimal selling time \(\tau^* = T \)
Let \(P_t = e^{\mu t + \sigma B_t} \), \(M_t = \max_{0 \leq s \leq t} P_s \)

Assume \(\alpha \geq 0.5 \)

- Optimal selling time \(\tau^* = T \)
- Need to determine \(E \left[\frac{M_T - P_T}{M_T} \right] \): the optimal relative error
Let $P_t = e^{\mu t + \sigma B_t}$, $M_t = \max_{0 \leq s \leq t} P_s$

Assume $\alpha \geq 0.5$

Optimal selling time $\tau^* = T$

Need to determine $E \left[\frac{M_T - P_T}{M_T} \right]$: the optimal relative error

The joint density function of (P_T, M_T) is

$$f_T(p, m) = \frac{2}{\sigma^3 \sqrt{2\pi T^3}} \frac{\ln(m^2/p) e^{-\frac{\ln^2(m^2/p)}{2\sigma^2 T}} + \frac{\beta}{\sigma} \ln(p) - \frac{1}{2} \beta^2 T}{pm}$$

where $0 < p \leq m$, $m \geq 1$, $\beta = \frac{\mu}{\sigma} \equiv (\alpha - \frac{1}{2}) \sigma$
We have

\[E \left[\frac{P_T}{M_T} \right] = \int_0^1 P \left(\frac{P_T}{M_T} > y \right) dy \]

\[= \int_0^1 \int_y^\infty \int_{p \lor 1}^{p/y} f_T(p, m) dm dp dy \]

\[= \ldots \]

\[= \left(1 - \frac{1}{2\alpha} \right) \Phi \left((\alpha - \frac{1}{2})\sigma \sqrt{T} \right) + \left(1 + \frac{1}{2\alpha} \right) e^{\alpha \sigma^2 T} \Phi \left(\left(-\alpha + \frac{1}{2} \right) \sigma \sqrt{T} \right) \]
We have

\[
E \left[\frac{P_T}{M_T} \right] = \int_0^1 P \left(\frac{P_T}{M_T} > y \right) dy
\]

\[
= \int_0^1 \int_y^\infty \int_{p/y}^\infty f_T(p, m) dmdpdy
\]

\[= \cdots \]

\[= \left(1 - \frac{1}{2\alpha} \right) \Phi \left((\alpha - \frac{1}{2})\sigma \sqrt{T} \right) + \left(1 + \frac{1}{2\alpha} \right) e^{\alpha\sigma^2T} \Phi \left(-(\alpha + \frac{1}{2})\sigma \sqrt{T} \right)\]

Optimal relative error \(r^*(\alpha, \sigma) \) decreases in \(\alpha \) and increases in \(\sigma \).
We have

$$E \left[\frac{P_T}{M_T} \right] = \int_0^1 P \left(\frac{P_T}{M_T} > y \right) dy$$

$$= \int_0^1 \int_y^\infty \int_{p \vee 1}^{p/y} f_T(p, m) dmdpdy$$

$$= \cdots$$

$$= \left(1 - \frac{1}{2\alpha}\right) \Phi \left((\alpha - \frac{1}{2})\sigma\sqrt{T}\right) + \left(1 + \frac{1}{2\alpha}\right) e^{\alpha\sigma^2T} \Phi \left(-\left(\alpha + \frac{1}{2}\right)\sigma\sqrt{T}\right)$$

Optimal relative error $r^*(\alpha, \sigma)$ decreases in α and increases in σ.

$$0 \leq r^*(\alpha, \sigma) < \frac{1}{2\alpha}$$
Assume $\alpha < 0.5$
Assume $\alpha < 0.5$

- Optimal selling time $\tau^* = 0$
Assume $\alpha < 0.5$

- Optimal selling time $\tau^* = 0$
- Optimal relative error

$$r^*(\alpha, \sigma) = 1 - \frac{2\alpha - 1}{2(\alpha - 1)} \Phi \left(\frac{1}{2} - \alpha \right) \sigma \sqrt{T} - \frac{2\alpha - 3}{2(\alpha - 1)} e^{(1-\alpha)\sigma^2 T} \Phi \left(\alpha - \frac{3}{2} \right) \sigma \sqrt{T}$$
The Messages

If one accepts the investment criterion in our model, then

- The stock is said to be “good” if $\alpha \geq 0.5$
If one accepts the investment criterion in our model, then

- The stock is said to be “good” if $\alpha \geq 0.5$
 - In this case one should apply a pure buy-and-hold policy
If one accepts the investment criterion in our model, then

- The stock is said to be “good” if $\alpha \geq 0.5$
 - In this case one should apply a pure buy-and-hold policy
 - The better the stock the smaller relative error; the latter diminishes to zero as α goes to infinity
The stock is said to be “good” if $\alpha \geq 0.5$.

- In this case one should apply a pure buy-and-hold policy.
- The better the stock the smaller relative error; the latter diminishes to zero as α goes to infinity.

The stock is said to be “bad” if $\alpha < 0.5$.

Thou Shalt Still Buy and Hold.
If one accepts the investment criterion in our model, then

- The stock is said to be “good” if $\alpha \geq 0.5$
 - In this case one should apply a pure buy-and-hold policy
 - The better the stock the smaller relative error; the latter diminishes to zero as α goes to infinity

- The stock is said to be “bad” if $\alpha < 0.5$
 - In this case one should not buy in the first place, or should short if possible
Mehra & Prescott (1985): $\alpha - r = 6.18\%$, $\sigma = 16.67\%$ based on S&P 500 (1889-1978)

$\alpha = 2.2239 > 0.5$ (by large margin)!
Mehra & Prescott (1985): $\alpha - r = 6.18\%$, $\sigma = 16.67\%$ based on S&P 500 (1889-1978)

$\alpha = 2.2239 > 0.5$ (by large margin)!

Taking $T = 1$, $r^*(\alpha, \sigma) = 10.15\%$

$\alpha = 2.2239 > 0.5$ (by large margin)!

Taking $T = 1$, $r^*(\alpha, \sigma) = 10.15\%$

Buy and hold an S&P 500 index fund for one year: Statistically expected to achieve almost 90% of the maximum possible return!
Market Timing

- Buy-and-hold rule believed to be the antithesis of market timing
Market Timing

- Buy-and-hold rule believed to be the antithesis of market timing
 - You can’t really enter on lows and sell on highs so you might as well just buy and hold
Market Timing

- Buy-and-hold rule believed to be the antithesis of market timing
 - You can’t really enter on lows and sell on highs so you might as well just buy and hold
- Yet, our model indeed based on market timing (attempting to sell high)
Market Timing

- Buy-and-hold rule believed to be the antithesis of market timing
 - You can’t really enter on lows and sell on highs so you might as well just buy and hold
- Yet, our model indeed based on market timing (attempting to sell high)
 - It actually leads to buy and hold!
Buy-and-hold rule believed to be the antithesis of market timing
 - You can’t really enter on lows and sell on highs so you might as well just buy and hold
Yet, our model indeed based on market timing (attempting to sell high)
 - It actually leads to buy and hold!
 - So the market timing is consistent with buy-and-hold
Our optimal solutions *insensitive* to the market parameters
Our optimal solutions *insensitive* to the market parameters

Definition of good/bad stock involves a *range* of parameters, instead of specific values
Insensitivity to Market Parameters

- Our optimal solutions *insensitive* to the market parameters
- Definition of good/bad stock involves a *range* of parameters, instead of specific values
- As with S&P 500, $\alpha \geq 0.5$ satisfied by a large margin which would accommodate sufficient level of (estimation) errors
Insensitivity to Market Parameters

- Our optimal solutions *insensitive* to the market parameters
- Definition of good/bad stock involves a *range* of parameters, instead of specific values
- As with S&P 500, $\alpha \geq 0.5$ satisfied by a large margin which would accommodate sufficient level of (estimation) errors
- In statistical terms, verifying whether $\alpha \geq 0.5$ much easier than estimating α itself
Our optimal solutions insensitive to the market parameters

Definition of good/bad stock involves a range of parameters, instead of specific values

As with S&P 500, $\alpha \geq 0.5$ satisfied by a large margin which would accommodate sufficient level of (estimation) errors

In statistical terms, verifying whether $\alpha \geq 0.5$ much easier than estimating α itself

Notorious mean–blur problem hardly an issue in our model
Our optimal solutions \textit{insensitive} to the market parameters

Definition of good/bad stock involves a \textit{range} of parameters, instead of specific values

As with S&P 500, $\alpha \geq 0.5$ satisfied by a large margin which would accommodate sufficient level of (estimation) errors

In statistical terms, verifying whether $\alpha \geq 0.5$ much easier than estimating α itself

Notorious mean–blur problem hardly an issue in our model

On the other hand: an interesting problem to test hypothesis $\alpha \geq 0.5$
How Essential is Bang–Bang Policy?

Consider

\[\max_{0 \leq \tau \leq T} E \left[U \left(\frac{P_\tau}{M_T} \right) \right] \quad (5) \]

- We have shown that if \(U \) is linear then optimal stopping is bang–bang (either \(\tau^* = T \) or \(\tau^* = 0 \))

Xunyu Zhou/Oxford

Thou Shalt Still Buy and Hold
Consider

\[
\max_{0 \leq \tau \leq T} E \left[U \left(\frac{P_\tau}{M_T} \right) \right]
\] (5)

- We have shown that if \(U \) is linear then optimal stopping is bang–bang (either \(\tau^* = T \) or \(\tau^* = 0 \)).
- If \(U \) is logarithm or power then optimal stopping times are exactly the same.
Consider

\[
\max_{0 \leq \tau \leq T} E \left[U \left(\frac{P_{\tau}}{M_T} \right) \right]
\]

(5)

- We have shown that if \(U \) is linear then optimal stopping is bang–bang (either \(\tau^* = T \) or \(\tau^* = 0 \))
- If \(U \) is logarithm or power then optimal stopping times are exactly the same
- What about a general \(U \)?
Let \(v(x) := U(e^x) \). The problem is equivalent to

\[
\max_{0 \leq \tau \leq T} E \left[v(B^\mu_\tau - S^\mu_T) \right]
\]

Theorem

(Dai, Jin and Zhou 2008)

- If \(v \) is increasing and convex, then optimal stopping is bang–bang (\(\tau^* = T \) if \(\alpha \geq 0.5 \), and \(\tau^* = 0 \) if \(\alpha < 0.5 \)).
Let $v(x) := U(e^x)$. The problem is equivalent to

$$\max_{0 \leq \tau \leq T} E \left[v(B^\mu_\tau - S^\mu_T) \right]$$

Theorem

(Dai, Jin and Zhou 2008)

- *If* v *is increasing and convex, then optimal stopping is bang–bang* ($\tau^* = T$ *if* $\alpha \geq 0.5$, *and* $\tau^* = 0$ *if* $\alpha < 0.5$).

- Assume v is increasing, C^2, and $|v''(x)| \leq e^{k(x^2+1)}$. *If* optimal stopping is bang–bang, *then* v *must be convex.*
Experiment 1: **You have been given £1000.** Now choose between
Experiment 1: You have been given £1000. Now choose between
- A: Win £1000 with 50% chance and £0 with 50% chance
Experiment 1: **You have been given £1000.** Now choose between

- **A: Win £1000 with 50% chance and £0 with 50% chance**
- **B: Win £500 with 100% chance**
Experiment 1: You have been given £1000. Now choose between

- A: Win £1000 with 50% chance and £0 with 50% chance
- B: Win £500 with 100% chance

B was more popular
Convexity and Behavioural Finance

- **Experiment 1**: You have been given £1000. Now choose between
 - A: **Win** £1000 with 50% chance and £0 with 50% chance
 - B: **Win** £500 with 100% chance
 - B was more popular

- **Experiment 2**: You have been given £2000. Now choose between
Convexity and Behavioural Finance

- **Experiment 1:** You have been given £1000. Now choose between
 - A: Win £1000 with 50% chance and £0 with 50% chance
 - B: Win £500 with 100% chance
 - B was more popular

- **Experiment 2:** You have been given £2000. Now choose between
 - A: Lose £1000 with 50% chance and £0 with 50% chance
Convexity and Behavioural Finance

- **Experiment 1:** You have been given £1000. Now choose between
 - A: **Win** £1000 with 50% chance and £0 with 50% chance
 - B: **Win** £500 with 100% chance
 - B was more popular

- **Experiment 2:** You have been given £2000. Now choose between
 - A: **Lose** £1000 with 50% chance and £0 with 50% chance
 - B: **Lose** £500 with 100% chance
Convexity and Behavioural Finance

Experiment 1: You have been given £1000. Now choose between
- A: Win £1000 with 50% chance and £0 with 50% chance
- B: Win £500 with 100% chance
B was more popular

Experiment 2: You have been given £2000. Now choose between
- A: Lose £1000 with 50% chance and £0 with 50% chance
- B: Lose £500 with 100% chance
This time: A was more popular
Experiment 1: You have been given £1000. Now choose between
- A: Win £1000 with 50% chance and £0 with 50% chance
- B: Win £500 with 100% chance
- B was more popular

Experiment 2: You have been given £2000. Now choose between
- A: Lose £1000 with 50% chance and £0 with 50% chance
- B: Lose £500 with 100% chance
- This time: A was more popular

Yet the two experiments have exactly the same final wealth positions!
Convexity and Behavioural Finance

- **Experiment 1:** You have been given £1000. Now choose between
 - A: Win £1000 with 50% chance and £0 with 50% chance
 - B: Win £500 with 100% chance
 - B was more popular

- **Experiment 2:** You have been given £2000. Now choose between
 - A: Lose £1000 with 50% chance and £0 with 50% chance
 - B: Lose £500 with 100% chance
 - This time: A was more popular

- Yet the two experiments have exactly the **same** final wealth positions!

- *Reference point* (Kahneman and Tversky 1979) or *customary wealth* (Markowitz 1952)
Convexity and Behavioural Finance

- Experiment 1: **You have been given £1000.** Now choose between
 - A: **Win £1000** with 50% chance and **£0** with 50% chance
 - B: **Win £500** with 100% chance
 - B was more popular

- Experiment 2: **You have been given £2000.** Now choose between
 - A: **Lose £1000** with 50% chance and **£0** with 50% chance
 - B: **Lose £500** with 100% chance
 - This time: A was more popular

- Yet the two experiments have exactly the same final wealth positions!

- **Reference point** (Kahneman and Tversky 1979) or **customary wealth** (Markowitz 1952)

- Risk-averse on gains, and **risk-seeking on losses**
In this model the maximum S_T^μ implicitly taken as reference point.

$$\max_{0 \leq \tau \leq T} E \left[v(B_\tau^\mu - S_T^\mu) \right]$$
Maximum as Reference Point

\[
\max_{0 \leq \tau \leq T} E \left[\nu(B_{\tau}^{\mu} - S_{T}^{\mu}) \right]
\]

- In this model the maximum S_{T}^{μ} implicitly taken as reference point
- Always in a “loss” situation
Maximum as Reference Point

\[
\max_{0 \leq \tau \leq T} E \left[v(B_{\tau}^\mu - S_{T}^\mu) \right]
\]

- In this model the maximum S_{T}^μ implicitly taken as reference point
- Always in a “loss” situation
- Hence risk-seeking or having convex v
Maximum as Reference Point

\[\max_{0 \leq \tau \leq T} E \left[\nu(B^\mu_\tau - S^\mu_T) \right] \]

- In this model the maximum \(S^\mu_T \) implicitly taken as reference point
- Always in a “loss” situation
- Hence risk-seeking or having convex \(\nu \)
- Bang-bang (or buy-and-hold) behaviour consistent with behavioural theory
It is only natural that an investor wishes to sell a stock closest to the maximum price over a given planning horizon.
Conclusions

- It is only natural that an investor wishes to sell a stock closest to the maximum price over a given planning horizon.
- The problem is formulated as an optimal stopping problem.
Conclusions

- It is only natural that an investor wishes to sell a stock closest to the maximum price over a given planning horizon.
- The problem is formulated as an optimal stopping problem.
- We have shown that, even in the absence of transaction costs, one should *buy and hold*, if the stock is good, that is...
Conclusions

- It is only natural that an investor wishes to sell a stock closest to the maximum price over a given planning horizon.
- The problem is formulated as an optimal stopping problem.
- We have shown that, even in the absence of transaction costs, one should buy and hold, if the stock is good, that is.
- By a good stock we specify that its goodness index is greater than 0.5.
Conclusions

- It is only natural that an investor wishes to sell a stock closest to the maximum price over a given planning horizon.
- The problem is formulated as an optimal stopping problem.
- We have shown that, even in the absence of transaction costs, one should *buy and hold*, if the stock is good, that is.
- By a good stock we specify that its goodness index is greater than 0.5.
- This rule is robust with respect to different “utilities” one applies.
Conclusions

- It is only natural that an investor wishes to sell a stock closest to the maximum price over a given planning horizon.
- The problem is formulated as an optimal stopping problem.
- We have shown that, even in the absence of transaction costs, one should *buy and hold*, if the stock is good, that is.
- By a good stock we specify that its goodness index is greater than 0.5.
- This rule is robust with respect to different “utilities” one applies.
- This, at least from one angle, reinforces the conventional maxim of *buy and hold*.
Conclusions

- It is only natural that an investor wishes to sell a stock closest to the maximum price over a given planning horizon.
- The problem is formulated as an optimal stopping problem.
- We have shown that, even in the absence of transaction costs, one should *buy and hold*, if the stock is good, that is.
- By a good stock we specify that its goodness index is greater than 0.5.
- This rule is robust with respect to different “utilities” one applies.
- This, at least from one angle, reinforces the conventional maxim of *buy and hold*.
- That our model produces buy-and-hold rule suggests the criterion proposed sensible and warrants further investigations.
A Serenity Prayer: Illusion of Control

Thou Shalt Still Buy and Hold
A Serenity Prayer: Illusion of Control

God, grant me the serenity to accept the things I cannot control, courage to control the things I can, and the wisdom to know the difference.

—— Meir Statman