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The Green Function

() C R™: a bounded domain with the Liptschitz boundary 0€) (n > 2).
f € L?(Q): given.

Consider the following Poisson problem:
—Aw = f in{, w=0 on o).

The unique solution of the Poisson problem is written by

w(z) = /Q e, ) )

where G(x, y) is the Green function of A on ).
The Green function of the above BVP is defined so that

o —AG(z,y) =0d(x —y), z,y € (L Jis the Dirac’s delta function.
e G(z,y)=0,2 €09,y € .

|
G AR NN +B: 57537 0 Green B Hadamard 24 3/36



Define the fundamental solution I'(x) of A by

1
——log]x\ n =2
['(x) :=

Then, we have
—ATl'(z —y) = 0(z — y),

or, for w € C%(9),
()= /Q (— Aw(@))T(z — y)dz

ow 0
+ [ G @ = 9) - wl@) 5T - )| dse

This formula is called Green’s representation formula.
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For a harmonic function u € C'*(Q) N C?(€)), we have the Green’s formula:

ow ou
— —A + U — wWw— )
0 /( w)udx /(9 [ Vu w 5V] ds

Therefore, we obtain a more general version of Green’s representation formula:
w(y) = [ (~Aw)@(T@ =) +ul@)da

—I—/ [(%U(:E) (F(CU — y) + u(x)) — w(x) ¢ (I‘(x _ y) 4 u(a:)) ds,.
of2

v,
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Then, the Green function G(x, y) is defined by
G(r,y) =Tz —y) + K(z,y),
where u(x) = K (x,y) is a harmonic function of x for fixed y € €2 such that

Au=0 inQ2, wu=-T(—y) ondf.

) = /Q e R e /a Qw<x>§—%a<x,y>dsx.
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Therefore, the solution of the BVP
—Aw = f in{), w=g¢g onJ)

IS written by

/f G(z,y dx—/@ﬁg(w)gy G(x,y)ds,.
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Domain Purtabations

Let) C R" be a sufficiently large domain such that  C Q.
We consider a family of bi-Lipschitz homeomorphisms

~ ~

Te(x): Q — T(2) CQ,  supp(Tz) C 2.

We assume that 2 > z + T;(x) is twice differentiable with respect to t. We
also assume that, for s = 1, 2,

az’
ot

55 11(2), 57 V(T2), 5

T (2), V(T ()

are uniformly bounded on 2 x (—¢, €) for sufficiently small £ > 0.
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Define 9T 92T
t t
= — R:= —= :
> Ot li=0’ Ot?2  |i=0

Then, 7; has the Taylor expansion

Ti(z) = z + 1S(x) + 3t°R(z) + o(t?).

() and ().
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Normal Perturbations

Let OS2 be sufficiently smooth and p(z) be a smooth function defined on Of2.
Then, define
0N +tp:x+tp(x)vy, x € I

The domain €2; is the domain with 92, = 0€) + tp.

o) +tp

tp
o0

|
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Dynamical Perturbations

Let a vector field S be given on Q with suppS C Q.
Then, the domain transformations

Ti(z): Q — T;(Q) C R™

are defined by
d
dt Jt(z) = S(Te(z)), To(z) ==

In this case, T¢(x) is called a dynamical perturbation

Note that, for dynamical perturbations, we have

(S-V)S =R

|
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Let G(x,y,t) : the Green ft. of —A on §2;.
Hadamard obtained the derivative of the Green ft. G(x, y, t) with respect
t > 0:
G(z,y,t) — G(z,
0G(z,y) := lim (.9, ) ( y)’
t—0+ t

x,y € ().

Theorem 1 (Hadamard’s variational formula)  Let OS2 be of C1-
class. For the differentiable perturbation 7;, we have

0 0
5G(wa y) — <5'05’_1/G(’ y)a 8_1/G(’ w)>1/2739 )

where dp : =S - v.

(*s)1/2,00: the duality pairing of H=Y2(0) and H'/2(09).
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History of the Hadamard Variational Formula

Hadamard, Mémoire sur le probleme d’analyse relatif a I'equilibre des plaques
élastigues encastrées, Oeuvres, 2 (1968), 515-631.

Garabedian, Partial Differential Equation, Chelsea,1964.
/INRE, sHIS D EE) & WA EA—E, 205 |, 33 (1981), 248 —261.
Suzuki, Tsuchiya, First and second Hadamard Variational formulae of the

Green function for general domain perturbations, Journal of Mathematical
Society of Japan, to appear.

Hadamard (1908):
0f) and S(x) are of C“-class and 7T;(x) is a normal perturbation.

Schiffer (1946), Garabedian-Schiffer (1952-53):
00 and S(x) are of C'*-class with sufficiently large k and 7;(z) is a normal
perturbation.

Suzuki—Tsuchiya:

02 and S(x) are of Cll class and T:(x) is a general perturbation.
|
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Eulerian Derivative and Lagrangian Derivative

Q c R?: C*! domain, k = 1, 2.
Qt = 7;(9), t Z 0.
@ : a function defined in the nbd of ).

Consider the Dirichlet problem:
Au(-,t) =0inQ,  u(-,t) = ¢ on 0€.

Now, we consider the two kinds of derivatives of u(-, t) with respect of .

. d . d2

(@) = = (WTi@), ) |, @) = = @), 0) | _
. 0 . 0>
tg(x) == au(x,t) ‘tzo’ tig(x) == ﬁu(a:,t) ‘t:O .

. and u . are called the Lagrangian derivatives,

uge and ug are called the Eulerian derivatives.
]

|
G AR NN +B: 57537 0 Green B Hadamard 243 14 /36



Eulerian Derivative

Differentiating u (7 (x),t) = ¢(T¢(x)) with respect to ¢ and letting ¢ — 0+,
we have

e +S-Vu=S5S-Vop on 0.
Therefore, ug satisfies

Aue =0 in(,
ug =S - (Ve —Vu) on 0.

|
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Let I'(x) be the fundamental solution of the Laplacian. Then, the Green
function G(x, y) is defined by

G(z,y) =Tz —y) + K(z,y),
where u(x) = K (x,y) is a harmonic function of x for fixed y € €2 such that
Au=0 inQ2, wu=-T(—y) ondf.
G(x,y,t): the Green function of €2
G(z,y,t) =T'(z —y) + K(z,y,1),
where u(x,t) = K (x,y,t) is a harmonic function such that

Au(-,t) =0 € Q,  u(-,t)=-T(—y) x €.
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Therefore, the Eulerian derivative ig of u satisfies

Aug =0 inQ
ue =S - Ve(—I'(z —y) —u(r)) = =S VoG(z,y)
0

The solution of the BVP
Av=0 in{, v=g onodf

IS written by
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Therefore, we have

o) = (5 2t ). 2w
iew) = (8 )00 ZoGw)
(ug(w) = . 3?195 G(z, w)a(?/w G(z,y)(S- I/)dSa;)

The first variation dG(x, y) of the Green function is written by, for w, y € )

. Gw,y,t) — G(w, ,
6G(w,y) := lim .y )t ( y)ZUe(w)

_ <(S - u)g—yG(-,y), g_,,G("w)>

|
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Hadamard’s Variational Formula — the Second Variation

Consider the boundary value problem Au = 0in €2, u = ¢ on 9f). Then, the
solution’s Eularian derivative ug satisfies

Aug =0inQ, ug=S- (Ve —Vu)ono.
Also, ug satisfies

Atie =0 in(,
ile = —2S - Vg + R- (Vo — Vu) + (Hap — Hou) - (S)? on 09,

where H ;. is the Hesse matrix of .
On the case of the Green function, ¢ = —1I".

|
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Recall that the Green function G is defined by
G(z,y) :==T(z —y) + u(x).

The harmonic function u satisfies Au = 0in €2, u = —1I" on 9€). The second
variation of the Green function is defined by

82
2 v _
0 G(SIZ,y) " atQG(xvyat) - Ug(iU)
The function ug is written by
602G (x,y) = iig(z) =2 S -VuiG(w,y) 0 G(x,w)dsy,
of2 aV:v
0
+/ R-V.,G(w,y G(x,w)dsy,
| R VuGluy) -Gl w)
0
+ HoG(w,y) - (S)? G(x,w)dsy,.
o0f a’/a:
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Theorem 2 (Hadamard’s second variational formula)
Let O be of C%'1-class. For the twice differentiable perturbation 77,

we have
FGlay) = oGayt) | = ie(a)
) 2R P
_ <xiG(-,x), ig(.,y)> 2(VEG(-,z), VG (- y))a
v v 1/2,09

0(dp)°
ov

X:=08p—=((S-V)S)-v—(6p)*(V-v)—(S-V)ip+

where 6p =S - v, §?p := R-v and V - v is the mean curvature of
o€}, thatis, V - v = Z?’:_ll K.

Suzuki, Tsuchiya, First and second Hadamard Variational formulae of the
Green function for general domain perturbations, Journal of Mathematical
Society of Japan, to appeatr.
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Corollary 3 (Garabedian-Schiffer formula)
Let OF) be of C*!-class. If T; is a normal perturbation, we have

oV, " Ovy,

— 2VSG(-, z), VOG(-, y))a.

Garabedian, Schiffer, Convexity of domain functionals,
J. Anal. Math., 2 (1952-53) 281-368.
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Corollary 4 Let O be of C?%!-class. If 7; is a dynamical perturba-
tion, we have

82

02G(z,y) = @G(x,y,t) t—(): tig(x)
G ?
= (o gpC0m 300N ) 2ATIC ), VG

0(dp)*

0= =(0p)*(V-v) = (S-V)op+ —

?p=R-v,R=(S-V)S.

0(dp)*
v

X:=08p—((S-V)S)-v—(6p)*(V-v) = (S-V)dp+

|
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The Dam Problem

ha

‘DAmM: the region of the dam.
(): the portion of water flow in TAM.

|
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Then, the boundary 02 of {) consists of four parts:

I =9 (the impervious part)

['s C Dam  (the free boundary)

I's = 53 (the part in contact with water reservoirs)
I'y C 59 (the part in contact with air)

R;, (7 = 1,2) : two disjoint reservoirs.
h; (h1 > h2): the height of the water in R, (j = 1, 2).

|
G AR NN +B: 57537 0 Green BED Hadamard 243 25/ 36



The Dam (Filtration) Problem

Find the flow region €2 C DAm and the potential function u defined on {2 which

satisfies

Au =0
U = I9
ou _
81/_0
ou

81/§0

in €2,
onl'y UI's Ul'y,
onl'; Ul's,

only,

where v := (v, v2) is the unit outer normal vector of Of).

Note that on the free boundary I'9, both Dirichlet’'s and Neumann’s conditions

are imposed.

|
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Trial (Fictitious) Free Boundary Methods

Q9 an initial guess, 1(9): solution of

oul9)

— (0 on the EB.
ov

Au® =0 in QO with, say,

In general, u\%) % 25 on the EB.
From the computed data, define QW and compute the solution u) of ...

To obtain a better understanding on TFBM, we need to have “Calculus of
Variation of the Dam Problem ” w.r.t. domain transformations.

| |
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Variational Principle for the Dam Problem

Suzuki, Tsuchiya, Convergence analysis of trial free boundary methods for the
two-dimensional filtration problem, Numerische Mathematik, 100 (2005)
537-564.

Suppose that we have a set of admissible domains (candidates of solution) of
the dam problem. We denote it by Ap. Let 2 € Ap. Consider the functions
uq, wq which satisfy

Aug = Awg =0 in(,

Jwaq
ug = o only, ——— =0 onls.

ov

We introduce a variational principle of the dam problem defined by the
difference between ugn and wq.
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Let Dq(v) be the Dirichlet integral defined by

1
Dq(v) := 5 /Q V%, forv € H'(Q).

Define the domain functionals ¢ : Ap — R, b : Ap — R by
a(2) := Dq(ugq), b(2) := Dq(wgq).

Note that, since A(€2) C B({2), we have

J(9) = a(Q) — b(Q) > 0.
Moreover, we have

J(2) =0 <= Qisthe sol. of the Dam Problem.
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The first variation of  a(2)

Consider domain perturbations 7; of R4m such that €, := T;(2) € Ap for

any sufficiently small ¢ > 0. Define the first variation of a(£2) by

%a(}) := tl—i>rgl+ e t— a(Q)'

Lemma [Suzuki-Tsuchiya]
Let po := uq — x2. Then, we have

5(9)—1/ L (922) 5 pas
YT IPoUI v e

where 0p := S - v is the normal component of S.
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The first variation of  b(2).

We would also like to obtain the first variation db({2) of b(£2) with respect to
the domain transformation 7;:

The first variation of b is more difficult than thta of a, because domain
transformation may cause changes of the mixed boundary condition.
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Note that for ¢, I’y and T'4 depend on ¢. So we denote them by T' and T'%.
Define

Vi(€) = {v c Hl(Qt) ’ v=0onI'3U FZ}.
The difficulty here comes from the fact that
wEVl(Qt)<:>wo7;€V1(Q) (1)

is not valid in general. If (1) holds for all sufficiently small ¢ > 0, the
perturbation 7; is said to satisfy NPO condition (Non-Peeling-Off).
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Lemma (Suzuki-Tsuchiya)
Suppose that 7; satisfies the NPO condition. Then, we have

1

ob(2) = 5/1“ IV swal?dpds
2

where dp := S - v is the normal component of S, and V stands for the gradient
on the tangential space of I's.

Theorem (Suzuki-Tsuchiya)
Suppose that 7; satisfies the NPO condition. Then, we have

2
0J(Q2) = %/F (1 — (%’%) — V3w92> dpds.

Moreover, §.J(€2) = 0 for any sufficiently small §p if and only if Q € Ap is the
solution of the filtration problem.

Suzuki, Tsuchiya, Weak formulation of Hadamard variation applied to the
filtration problem, Japan J. Indust. Appl. Math., 28 (2011) 327-350.
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TFBM using the Hadamard Variation |

The Steepest Descent Method (?)

ng): the k-th geuss of the free boundary

FV(z) =1 (22 T (2m2) e p
' ov ds ) ° :

A naive iterative scheme is

ngﬂ) = ng) — eFV(z)v,

)

where v Is the outer unit normal vector at x € I‘gk
However, this iteration dose not work at all.

and € is a positive constant.
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TFBM using the Hadamard Variation Il

The Traction Method or The H! Gradient Method

Let 2(¥) € H1(Q)) be the solution of the following problem:

Az = ( in Q(k), 2(k) = (

(k) (k)
851/ =0 onlYy, 851/ = FV  on ng),

onT5 U,

The traction method is to define iteration by

k+1 k k
r{FH) =1 — ) (),
where v is the outer unit normal vector at x € ng).
This method was proposed by Azegami;

H. Azegami, A solution to domain optimization problems (in Japanese),
Trans. of Japan Society of Mech Engs., Ser. A, 60 (1994) 1479-1486
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