

# ラプラシアンの Green 関数の Hadamard 変分

土屋 卓也 (愛媛大学理工学研究科)

数学協働プログラム 工学と現代数学の接点を求めて (1)

大阪大学豊中キャンパス 2015 年 12 月 22 日

## Contents

- The Green Function and its domain perturbation
- The Lagrangian and Eulerian derivatives
- Hadamard's Variational Formula (the case of Dirichlet boundary conditions)
- Hadamard's Variational Formula (the case of Neumann boundary conditions)
- An application to the Dam Problem

## The Green Function

$\Omega \subset \mathbb{R}^n$ : a bounded domain with the Lipschitz boundary  $\partial\Omega$  ( $n \geq 2$ ).  
 $f \in L^2(\Omega)$ : given.

Consider the following Poisson problem:

$$-\Delta w = f \quad \text{in } \Omega, \quad w = 0 \quad \text{on } \partial\Omega.$$

The unique solution of the Poisson problem is written by

$$w(x) = \int_{\Omega} G(x, y) f(y) dy,$$

where  $G(x, y)$  is the **Green function** of  $\Delta$  on  $\Omega$ .

The **Green function** of the above BVP is defined so that

- $-\Delta G(x, y) = \delta(x - y)$ ,  $x, y \in \Omega$ .  $\delta$  is the Dirac's delta function.
- $G(x, y) = 0$ ,  $x \in \partial\Omega$ ,  $y \in \Omega$ .

Define the fundamental solution  $\Gamma(x)$  of  $\Delta$  by

$$\Gamma(x) := \begin{cases} -\frac{1}{2\pi} \log |x|, & n = 2 \\ \frac{1}{(n-2)\omega_n} |x|^{2-n}, & n \geq 3. \end{cases}$$

Then, we have

$$-\Delta \Gamma(x - y) = \delta(x - y),$$

or, for  $w \in C^2(\overline{\Omega})$ ,

$$\begin{aligned} w(y) &= \int_{\Omega} (-\Delta w(x)) \Gamma(x - y) dx \\ &\quad + \int_{\partial\Omega} \left[ \frac{\partial w}{\partial \nu}(x) \Gamma(x - y) - w(x) \frac{\partial}{\partial \nu_x} \Gamma(x - y) \right] ds_x. \end{aligned}$$

This formula is called **Green's representation formula**.

For a harmonic function  $u \in C^1(\bar{\Omega}) \cap C^2(\Omega)$ , we have the **Green's formula**:

$$0 = \int_{\Omega} (-\Delta w) u \, dx + \int_{\partial\Omega} \left[ \frac{\partial w}{\partial \nu} u - w \frac{\partial u}{\partial \nu} \right] \, ds.$$

Therefore, we obtain a more general version of **Green's representation formula**:

$$\begin{aligned} w(y) &= \int_{\Omega} (-\Delta w)(x)(\Gamma(x-y) + u(x)) \, dx \\ &+ \int_{\partial\Omega} \left[ \frac{\partial w(x)}{\partial \nu} (\Gamma(x-y) + u(x)) - w(x) \frac{\partial}{\partial \nu_x} (\Gamma(x-y) + u(x)) \right] \, ds_x. \end{aligned}$$

Then, the Green function  $G(x, y)$  is defined by

$$G(x, y) := \Gamma(x - y) + K(x, y),$$

where  $u(x) = K(x, y)$  is a harmonic function of  $x$  for fixed  $y \in \Omega$  such that

$$\Delta u = 0 \quad \text{in } \Omega, \quad u = -\Gamma(\cdot - y) \quad \text{on } \partial\Omega.$$

$$w(y) = \int_{\Omega} (-\Delta w)(x)G(x, y)dx - \int_{\partial\Omega} w(x) \frac{\partial}{\partial \nu_x} G(x, y)ds_x.$$

Therefore, the solution of the BVP

$$-\Delta w = f \quad \text{in } \Omega, \quad w = g \quad \text{on } \partial\Omega$$

is written by

$$w(y) = \int_{\Omega} f(x)G(x,y)dx - \int_{\partial\Omega} g(x)\frac{\partial}{\partial\nu_x}G(x,y)ds_x.$$

## Domain Perturbations

Let  $\tilde{\Omega} \subset \mathbb{R}^n$  be a sufficiently large domain such that  $\bar{\Omega} \subset \tilde{\Omega}$ .

We consider a family of bi-Lipschitz homeomorphisms

$$\mathcal{T}_t(x) : \Omega \rightarrow \mathcal{T}_t(\Omega) \subset \tilde{\Omega}, \quad \text{supp}(\mathcal{T}_t) \subset \tilde{\Omega}.$$

We assume that  $\bar{\Omega} \ni x \mapsto \mathcal{T}_t(x)$  is twice differentiable with respect to  $t$ . We also assume that, for  $i = 1, 2$ ,

$$\frac{\partial^i}{\partial t^i} \mathcal{T}_t(x), \quad \frac{\partial^i}{\partial t^i} \nabla(\mathcal{T}_t(x)), \quad \frac{\partial^i}{\partial t^i} \mathcal{T}_t^{-1}(x), \quad \frac{\partial^i}{\partial t^i} \nabla(\mathcal{T}_t^{-1}(x))$$

are uniformly bounded on  $\bar{\Omega} \times (-\varepsilon, \varepsilon)$  for sufficiently small  $\varepsilon > 0$ .

Define

$$S := \frac{\partial \mathcal{T}_t}{\partial t} \Big|_{t=0}, \quad R := \frac{\partial^2 \mathcal{T}_t}{\partial t^2} \Big|_{t=0}.$$

Then,  $\mathcal{T}_t$  has the Taylor expansion

$$\mathcal{T}_t(x) = x + tS(x) + \frac{1}{2}t^2R(x) + o(t^2).$$



$\Omega$  and  $\Omega_t$ .

## Normal Perturbations

Let  $\partial\Omega$  be sufficiently smooth and  $\rho(x)$  be a smooth function defined on  $\partial\Omega$ .

Then, define

$$\partial\Omega + t\rho : x + t\rho(x)\boldsymbol{\nu}_x, \quad x \in \partial\Omega.$$

The domain  $\Omega_t$  is the domain with  $\partial\Omega_t = \partial\Omega + t\rho$ .



## Dynamical Perturbations

Let a vector field  $S$  be given on  $\tilde{\Omega}$  with  $\text{supp} S \subset \tilde{\Omega}$ .

Then, the domain transformations

$$\mathcal{T}_t(x) : \Omega \rightarrow \mathcal{T}_t(\Omega) \subset \mathbb{R}^n$$

are defined by

$$\frac{d}{dt} \mathcal{T}_t(x) = S(\mathcal{T}_t(x)), \quad \mathcal{T}_0(x) = x.$$

In this case,  $\mathcal{T}_t(x)$  is called a **dynamical perturbation**.

Note that, for dynamical perturbations, we have

$$(S \cdot \nabla)S = R.$$

Let  $G(x, y, t)$  : the Green ft. of  $-\Delta$  on  $\Omega_t$ .

Hadamard obtained the derivative of the Green ft.  $G(x, y, t)$  with respect  $t \geq 0$ :

$$\delta G(x, y) := \lim_{t \rightarrow 0^+} \frac{G(x, y, t) - G(x, y)}{t}, \quad x, y \in \Omega.$$

**Theorem 1 (Hadamard's variational formula)** *Let  $\partial\Omega$  be of  $C^{1,1}$ -class. For the differentiable perturbation  $\mathcal{T}_t$ , we have*

$$\delta G(w, y) = \left\langle \delta \rho \frac{\partial}{\partial \nu} G(\cdot, y), \frac{\partial}{\partial \nu} G(\cdot, w) \right\rangle_{1/2, \partial\Omega},$$

where  $\delta \rho := S \cdot \nu$ .

$\langle \cdot, \cdot \rangle_{1/2, \partial\Omega}$ : the duality pairing of  $H^{-1/2}(\partial\Omega)$  and  $H^{1/2}(\partial\Omega)$ .

## History of the Hadamard Variational Formula

Hadamard, Mémoire sur le probleme d'analyse relatif à l'équilibre des plaques élastiques encastrées, Oeuvres, 2 (1968), 515–631.

Garabedian, Partial Differential Equation, Chelsea, 1964.

小沢真, 領域の摂動と固有値問題、「数学」, 33 (1981), 248 –261.

Suzuki, Tsuchiya, First and second Hadamard Variational formulae of the Green function for general domain perturbations, Journal of Mathematical Society of Japan, *to appear*.

Hadamard (1908):

$\partial\Omega$  and  $S(x)$  are of  $C^\omega$ -class and  $\mathcal{T}_t(x)$  is a normal perturbation.

Schiffer (1946), Garabedian-Schiffer (1952-53):

$\partial\Omega$  and  $S(x)$  are of  $C^k$ -class with sufficiently large  $k$  and  $\mathcal{T}_t(x)$  is a normal perturbation.

Suzuki-Tsuchiya:

$\partial\Omega$  and  $S(x)$  are of  $C^{1,1}$ -class and  $\mathcal{T}_t(x)$  is a general perturbation.

## Eulerian Derivative and Lagrangian Derivative

$\Omega \subset \mathbb{R}^n$ :  $C^{k,1}$  domain,  $k = 1, 2$ .

$\Omega_t := \mathcal{T}_t(\Omega)$ ,  $t \geq 0$ .

$\varphi$ : a function defined in the nbd of  $\Omega$ .

Consider the Dirichlet problem:

$$\Delta u(\cdot, t) = 0 \text{ in } \Omega_t, \quad u(\cdot, t) = \varphi \text{ on } \partial\Omega_t.$$

Now, we consider the two kinds of derivatives of  $u(\cdot, t)$  with respect of  $t$ .

$$\dot{u}_{\mathcal{L}}(x) := \frac{d}{dt} (u(\mathcal{T}_t(x), t)) \Big|_{t=0}, \quad \ddot{u}_{\mathcal{L}}(x) := \frac{d^2}{dt^2} (u(\mathcal{T}_t(x), t)) \Big|_{t=0}$$

$$\dot{u}_{\mathcal{E}}(x) := \frac{\partial}{\partial t} u(x, t) \Big|_{t=0}, \quad \ddot{u}_{\mathcal{E}}(x) := \frac{\partial^2}{\partial t^2} u(x, t) \Big|_{t=0}.$$

$\dot{u}_{\mathcal{L}}$  and  $\ddot{u}_{\mathcal{L}}$  are called the **Lagrangian derivatives**,

$\dot{u}_{\mathcal{E}}$  and  $\ddot{u}_{\mathcal{E}}$  are called the **Eulerian derivatives**.

## Eulerian Derivative

Differentiating  $u(\mathcal{T}_t(x), t) = \varphi(\mathcal{T}_t(x))$  with respect to  $t$  and letting  $t \rightarrow 0+$ , we have

$$\dot{u}_{\mathcal{E}} + \mathbf{S} \cdot \nabla u = \mathbf{S} \cdot \nabla \varphi \quad \text{on } \partial\Omega.$$

Therefore,  $\dot{u}_{\mathcal{E}}$  satisfies

$$\begin{aligned}\Delta \dot{u}_{\mathcal{E}} &= 0 \quad \text{in } \Omega, \\ \dot{u}_{\mathcal{E}} &= \mathbf{S} \cdot (\nabla \varphi - \nabla u) \quad \text{on } \partial\Omega.\end{aligned}$$

Let  $\Gamma(x)$  be the fundamental solution of the Laplacian. Then, the Green function  $G(x, y)$  is defined by

$$G(x, y) := \Gamma(x - y) + K(x, y),$$

where  $u(x) = K(x, y)$  is a harmonic function of  $x$  for fixed  $y \in \Omega$  such that

$$\Delta u = 0 \quad \text{in } \Omega, \quad u = -\Gamma(\cdot - y) \quad \text{on } \partial\Omega.$$

$G(x, y, t)$ : the Green function of  $\Omega_t$ :

$$G(x, y, t) = \Gamma(x - y) + K(x, y, t),$$

where  $u(x, t) = K(x, y, t)$  is a harmonic function such that

$$\Delta u(\cdot, t) = 0 \quad x \in \Omega_t, \quad u(\cdot, t) = -\Gamma(\cdot - y) \quad x \in \partial\Omega_t.$$

Therefore, the Eulerian derivative  $\dot{u}_{\mathcal{E}}$  of  $u$  satisfies

$$\Delta \dot{u}_{\mathcal{E}} = 0 \quad \text{in } \Omega$$

$$\begin{aligned}\dot{u}_{\mathcal{E}} &= \mathbf{S} \cdot \nabla_x (-\Gamma(x - y) - u(x)) = -\mathbf{S} \cdot \nabla_x G(x, y) \\ &= -(\mathbf{S} \cdot \boldsymbol{\nu}) \frac{\partial}{\partial \boldsymbol{\nu}_x} G(x, y) \quad \text{on } \partial\Omega.\end{aligned}$$

The solution of the BVP

$$\Delta v = 0 \quad \text{in } \Omega, \quad v = g \quad \text{on } \partial\Omega$$

is written by

$$v(w) = - \left\langle g, \frac{\partial}{\partial \boldsymbol{\nu}_x} G(\cdot, w) \right\rangle_{1/2, \partial\Omega}.$$

Therefore, we have

$$\dot{u}_{\mathcal{E}}(w) = \left\langle (S \cdot \nu) \frac{\partial}{\partial \nu} G(\cdot, y), \frac{\partial}{\partial \nu} G(\cdot, w) \right\rangle_{1/2, \partial\Omega}.$$

$$\left( \dot{u}_{\mathcal{E}}(w) = \int_{\partial\Omega} \frac{\partial}{\partial \nu_x} G(x, w) \frac{\partial}{\partial \nu_x} G(x, y) (S \cdot \nu) ds_x \right)$$

The first variation  $\delta G(x, y)$  of the Green function is written by, for  $w, y \in \Omega$

$$\begin{aligned} \delta G(w, y) &:= \lim_{t \rightarrow 0^+} \frac{G(w, y, t) - G(w, y)}{t} = \dot{u}_{\mathcal{E}}(w) \\ &= \left\langle (S \cdot \nu) \frac{\partial}{\partial \nu} G(\cdot, y), \frac{\partial}{\partial \nu} G(\cdot, w) \right\rangle_{1/2, \partial\Omega}. \end{aligned}$$

## Hadamard's Variational Formula — the Second Variation

Consider the boundary value problem  $\Delta u = 0$  in  $\Omega$ ,  $u = \varphi$  on  $\partial\Omega$ . Then, the solution's Eulerian derivative  $\dot{u}_{\mathcal{E}}$  satisfies

$$\Delta \dot{u}_{\mathcal{E}} = 0 \text{ in } \Omega, \quad \dot{u}_{\mathcal{E}} = S \cdot (\nabla \varphi - \nabla u) \text{ on } \partial\Omega.$$

Also,  $\ddot{u}_{\mathcal{E}}$  satisfies

$$\Delta \ddot{u}_{\mathcal{E}} = 0 \quad \text{in } \Omega,$$

$$\ddot{u}_{\mathcal{E}} = -2S \cdot \nabla \dot{u}_{\mathcal{E}} + R \cdot (\nabla \varphi - \nabla u) + (\mathcal{H}_x \varphi - \mathcal{H}_x u) \cdot (S)^2 \quad \text{on } \partial\Omega,$$

where  $\mathcal{H}_x \varphi$  is the Hesse matrix of  $\varphi$ .

On the case of the Green function,  $\varphi = -\Gamma$ .

Recall that the Green function  $G$  is defined by

$$G(x, y) := \Gamma(x - y) + u(x).$$

The harmonic function  $u$  satisfies  $\Delta u = 0$  in  $\Omega$ ,  $u = -\Gamma$  on  $\partial\Omega$ . The second variation of the Green function is defined by

$$\delta^2 G(x, y) := \frac{\partial^2}{\partial t^2} G(x, y, t) \Big|_{t=0} = \ddot{u}_{\mathcal{E}}(x).$$

The function  $\ddot{u}_{\mathcal{E}}$  is written by

$$\begin{aligned} \delta^2 G(x, y) = \ddot{u}_{\mathcal{E}}(x) = & 2 \int_{\partial\Omega} \mathbf{S} \cdot \nabla_w \delta G(w, y) \frac{\partial}{\partial \boldsymbol{\nu}_x} G(x, w) d\mathbf{s}_w \\ & + \int_{\partial\Omega} \mathbf{R} \cdot \nabla_w G(w, y) \frac{\partial}{\partial \boldsymbol{\nu}_x} G(x, w) d\mathbf{s}_w \\ & + \int_{\partial\Omega} \mathcal{H}_w G(w, y) \cdot (\mathbf{S})^2 \frac{\partial}{\partial \boldsymbol{\nu}_x} G(x, w) d\mathbf{s}_w. \end{aligned}$$

## Theorem 2 (Hadamard's second variational formula)

Let  $\partial\Omega$  be of  $C^{2,1}$ -class. For the twice differentiable perturbation  $\mathcal{T}_t$ , we have

$$\begin{aligned}\delta^2 G(x, y) &:= \frac{\partial^2}{\partial t^2} G(x, y, t) \Big|_{t=0} = \ddot{u}_{\mathcal{E}}(x) \\ &= \left\langle \chi \frac{\partial}{\partial \nu} G(\cdot, x), \frac{\partial}{\partial \nu} G(\cdot, y) \right\rangle_{1/2, \partial\Omega} - 2(\nabla \delta G(\cdot, x), \nabla \delta G(\cdot, y))_{\Omega} \\ \chi &:= \delta^2 \rho - ((S \cdot \nabla) S) \cdot \nu - (\delta \rho)^2 (\nabla \cdot \nu) - (S \cdot \nabla) \delta \rho + \frac{\partial(\delta \rho)^2}{\partial \nu},\end{aligned}$$

where  $\delta \rho = S \cdot \nu$ ,  $\delta^2 \rho := R \cdot \nu$  and  $\nabla \cdot \nu$  is the **mean curvature** of  $\partial\Omega$ , that is,  $\nabla \cdot \nu = \sum_{i=1}^{n-1} \kappa_i$ .

Suzuki, Tsuchiya, First and second Hadamard Variational formulae of the Green function for general domain perturbations, Journal of Mathematical Society of Japan, to appear.

### Corollary 3 (Garabedian-Schiffer formula)

Let  $\partial\Omega$  be of  $C^{2,1}$ -class. If  $\mathcal{T}_t$  is a normal perturbation, we have

$$\begin{aligned}\delta^2 G(x, y) = & - \left\langle (\delta\rho)^2 (\nabla \cdot \nu) \frac{\partial}{\partial \nu_w} G(\cdot, x), \frac{\partial}{\partial \nu_w} G(\cdot, y) \right\rangle_{1/2, \partial\Omega} \\ & - 2(\nabla \delta G(\cdot, x), \nabla \delta G(\cdot, y))_{\Omega}.\end{aligned}$$

Garabedian, Schiffer, Convexity of domain functionals,  
J. Anal. Math., 2 (1952-53) 281–368.

**Corollary 4** Let  $\partial\Omega$  be of  $C^{2,1}$ -class. If  $\mathcal{T}_t$  is a dynamical perturbation, we have

$$\begin{aligned}
 \delta^2 G(x, y) &:= \frac{\partial^2}{\partial t^2} G(x, y, t) \Big|_{t=0} = \ddot{u}_{\mathcal{E}}(x) \\
 &= \left\langle \sigma \frac{\partial}{\partial \nu} G(\cdot, x), \frac{\partial}{\partial \nu} G(\cdot, y) \right\rangle_{1/2, \partial\Omega} - 2(\nabla \delta G(\cdot, x), \nabla \delta G(\cdot, y))_{\Omega} \\
 \sigma &:= -(\delta \rho)^2 (\nabla \cdot \nu) - (S \cdot \nabla) \delta \rho + \frac{\partial (\delta \rho)^2}{\partial \nu}.
 \end{aligned}$$

$$\delta^2 \rho = R \cdot \nu, R = (S \cdot \nabla) S.$$

$$\chi := \delta^2 \rho - ((S \cdot \nabla) S) \cdot \nu - (\delta \rho)^2 (\nabla \cdot \nu) - (S \cdot \nabla) \delta \rho + \frac{\partial (\delta \rho)^2}{\partial \nu}.$$

# The Dam Problem



$\mathcal{D}_{\mathcal{M}}$ : the region of the dam.

$\Omega$ : the portion of water flow in  $\mathcal{D}_{\mathcal{M}}$ .

Then, the boundary  $\partial\Omega$  of  $\Omega$  consists of four parts:

$\Gamma_1 = S_1$  (the impervious part)

$\Gamma_2 \subset \mathcal{DAM}$  (the free boundary)

$\Gamma_3 = S_3$  (the part in contact with water reservoirs)

$\Gamma_4 \subset S_2$  (the part in contact with air)

$R_j$ , ( $j = 1, 2$ ) : two disjoint reservoirs.

$h_j$  ( $h_1 > h_2$ ): the height of the water in  $R_j$ , ( $j = 1, 2$ ).

## The Dam (Filtration) Problem

Find the flow region  $\Omega \subset \mathcal{DAM}$  and the potential function  $u$  defined on  $\Omega$  which satisfies

$$\begin{aligned}\Delta u &= 0 && \text{in } \Omega, \\ u &= x_2 && \text{on } \Gamma_2 \cup \Gamma_3 \cup \Gamma_4, \\ \frac{\partial u}{\partial \nu} &= 0 && \text{on } \Gamma_1 \cup \Gamma_2, \\ \frac{\partial u}{\partial \nu} &\leq 0 && \text{on } \Gamma_4,\end{aligned}$$

where  $\nu := (\nu_1, \nu_2)$  is the unit outer normal vector of  $\partial\Omega$ .

Note that on the free boundary  $\Gamma_2$ , both Dirichlet's and Neumann's conditions are imposed.

## Trial (Fictitious) Free Boundary Methods

$\Omega^{(0)}$ : an initial guess,  $u^{(0)}$ : solution of

$$\Delta u^{(0)} = 0 \quad \text{in } \Omega^{(0)} \quad \text{with, say, } \frac{\partial u^{(0)}}{\partial \nu} = 0 \text{ on the F.B.}$$

In general,  $u^{(0)} \neq x_2$  on the F.B.

From the computed data, define  $\Omega^{(1)}$  and compute the solution  $u^{(1)}$  of ....

To obtain a better understanding on TFBM, we need to have “**Calculus of Variation of the Dam Problem**” w.r.t. *domain transformations*.

## Variational Principle for the Dam Problem

Suzuki, Tsuchiya, Convergence analysis of trial free boundary methods for the two-dimensional filtration problem, Numerische Mathematik, 100 (2005) 537–564.

Suppose that we have a set of **admissible domains** (candidates of solution) of the dam problem. We denote it by  $\mathcal{A}_D$ . Let  $\Omega \in \mathcal{A}_D$ . Consider the functions  $u_\Omega, w_\Omega$  which satisfy

$$\begin{aligned} \Delta u_\Omega &= \Delta w_\Omega = 0 \quad \text{in } \Omega, \\ u_\Omega &= x_2 \quad \text{on } \Gamma_2, \quad \frac{\partial w_\Omega}{\partial \nu} = 0 \quad \text{on } \Gamma_2. \end{aligned}$$

We introduce a variational principle of the dam problem defined by the difference between  $u_\Omega$  and  $w_\Omega$ .

Let  $D_\Omega(v)$  be the Dirichlet integral defined by

$$D_\Omega(v) := \frac{1}{2} \int_\Omega |\nabla v|^2, \quad \text{for } v \in H^1(\Omega).$$

Define the *domain functionals*  $a : \mathcal{A}_D \rightarrow \mathbb{R}$ ,  $b : \mathcal{A}_D \rightarrow \mathbb{R}$  by

$$a(\Omega) := D_\Omega(u_\Omega), \quad b(\Omega) := D_\Omega(w_\Omega).$$

Note that, since  $A(\Omega) \subset B(\Omega)$ , we have

$$J(\Omega) := a(\Omega) - b(\Omega) \geq 0.$$

Moreover, we have

$$J(\Omega) = 0 \iff \Omega \text{ is the sol. of the Dam Problem.}$$

## The first variation of $a(\Omega)$

Consider domain perturbations  $\mathcal{T}_t$  of  $\mathcal{DAM}$  such that  $\Omega_t := \mathcal{T}_t(\Omega) \in \mathcal{A}_{\mathcal{D}}$  for any sufficiently small  $t > 0$ . Define the first variation of  $a(\Omega)$  by

$$\delta a(\Omega) := \lim_{t \rightarrow 0+} \frac{a(\Omega_t) - a(\Omega)}{t}.$$

**Lemma**[Suzuki-Tsuchiya]

Let  $p_{\Omega} := u_{\Omega} - x_2$ . Then, we have

$$\delta a(\Omega) = \frac{1}{2} \int_{\Gamma_2 \cup \Gamma_4} \left( 1 - \left( \frac{\partial p_{\Omega}}{\partial \nu} \right)^2 \right) \delta \rho ds,$$

where  $\delta \rho := \mathbf{S} \cdot \boldsymbol{\nu}$  is the normal component of  $\mathbf{S}$ .

## The first variation of $b(\Omega)$ .

We would also like to obtain the **first variation**  $\delta b(\Omega)$  of  $b(\Omega)$  with respect to the domain transformation  $\mathcal{T}_t$ :

$$\delta b(\Omega) := \lim_{t \rightarrow 0+} \frac{b(\Omega_t) - b(\Omega)}{t}$$

The first variation of  $b$  is more difficult than that of  $a$ , because domain transformation may cause changes of the mixed boundary condition.



Note that for  $\Omega_t$ ,  $\Gamma_2$  and  $\Gamma_4$  depend on  $t$ . So we denote them by  $\Gamma_2^t$  and  $\Gamma_4^t$ .

Define

$$V_1(\Omega_t) := \{v \in H^1(\Omega_t) \mid v = 0 \text{ on } \Gamma_3 \cup \Gamma_4^t\}.$$

The difficulty here comes from the fact that

$$w \in V_1(\Omega_t) \iff w \circ \mathcal{T}_t \in V_1(\Omega) \tag{1}$$

is not valid in general. If (1) holds for all sufficiently small  $t \geq 0$ , the perturbation  $\mathcal{T}_t$  is said to satisfy **NPO condition** (Non-Peeling-Off).

### Lemma (Suzuki-Tsuchiya)

Suppose that  $\mathcal{T}_t$  satisfies the NPO condition. Then, we have

$$\delta b(\Omega) = \frac{1}{2} \int_{\Gamma_2} |\nabla_s w_\Omega|^2 \delta \rho ds$$

where  $\delta \rho := S \cdot \nu$  is the normal component of  $S$ , and  $\nabla_s$  stands for the gradient on the tangential space of  $\Gamma_2$ .

### Theorem (Suzuki-Tsuchiya)

Suppose that  $\mathcal{T}_t$  satisfies the NPO condition. Then, we have

$$\delta J(\Omega) = \frac{1}{2} \int_{\Gamma_2} \left( 1 - \left( \frac{\partial p_\Omega}{\partial \nu} \right)^2 - |\nabla_s w_\Omega|^2 \right) \delta \rho ds.$$

Moreover,  $\delta J(\Omega) = 0$  for any sufficiently small  $\delta \rho$  if and only if  $\Omega \in \mathcal{A}_D$  is the solution of the filtration problem.

Suzuki, Tsuchiya, Weak formulation of Hadamard variation applied to the filtration problem, Japan J. Indust. Appl. Math., 28 (2011) 327–350.

## TFBM using the Hadamard Variation I

### The Steepest Descent Method (?)

$\Gamma_2^{(k)}$ : the  $k$ -th guess of the free boundary

$$FV(x) := 1 - \left( \frac{\partial p_\Omega}{\partial \nu} \right)^2 - \left( \frac{\partial w_\Omega}{\partial s} \right)^2, x \in \Gamma_2^{(k)}$$

A naive iterative scheme is

$$\Gamma_2^{(k+1)} := \Gamma_2^{(k)} - \epsilon FV(x) \nu,$$

where  $\nu$  is the outer unit normal vector at  $x \in \Gamma_2^{(k)}$  and  $\epsilon$  is a positive constant.  
However, **this iteration dose not work at all.**

## TFBM using the Hadamard Variation II

### The Traction Method or The $H^1$ Gradient Method

Let  $z^{(k)} \in H^1(\Omega^{(k)})$  be the solution of the following problem:

$$\begin{aligned}\Delta z^{(k)} &= 0 && \text{in } \Omega^{(k)}, & z^{(k)} &= 0 && \text{on } \Gamma_3 \cup \Gamma_4^{(k)}, \\ \frac{\partial z^{(k)}}{\partial \nu} &= 0 && \text{on } \Gamma_1, & \frac{\partial z^{(k)}}{\partial \nu} &= FV && \text{on } \Gamma_2^{(k)},\end{aligned}$$

The traction method is to define iteration by

$$\Gamma_2^{(k+1)} := \Gamma_2^{(k)} - z^{(k)}(x)\nu,$$

where  $\nu$  is the outer unit normal vector at  $x \in \Gamma_2^{(k)}$ .

This method was proposed by Azegami;

H. Azegami, A solution to domain optimization problems (in Japanese),  
Trans. of Japan Society of Mech Engs., Ser. A, 60 (1994) 1479–1486

## References

- SUZUKI, TSUCHIYA, Convergence analysis of trial free boundary methods for the two-dimensional filtration problem, *Numerische Mathematik*, 100 (2005) 537–564.
- SUZUKI, TSUCHIYA, Weak formulation of Hadamard variation applied to the filtration problem, *Japan Journal of Industrial and Applied Mathematics*, 28 (2011) 327–350.
- SUZUKI, TSUCHIYA, First and second Hadamard Variational formulae of the Green function for general domain perturbations, *Journal of Mathematical Society of Japan*, *to appear*.