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The Green Function
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Ω ⊂ R
n: a bounded domain with the Liptschitz boundary ∂Ω (n ≥ 2).

f ∈ L2(Ω): given.

Consider the following Poisson problem:

−∆w = f in Ω, w = 0 on ∂Ω.

The unique solution of the Poisson problem is written by

w(x) =

∫

Ω
G(x, y)f(y)dy,

where G(x, y) is the Green function of ∆ on Ω.
The Green function of the above BVP is defined so that

• −∆G(x, y) = δ(x− y), x, y ∈ Ω. δ is the Dirac’s delta function.

• G(x, y) = 0, x ∈ ∂Ω, y ∈ Ω.
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Define the fundamental solution Γ(x) of ∆ by

Γ(x) :=

{
− 1

2π log |x|, n = 2
1

(n−2)ωn

|x|2−n, n ≥ 3.

Then, we have

−∆Γ(x− y) = δ(x− y),

or, for w ∈ C2(Ω),

w(y) =

∫

Ω
(−∆w(x))Γ(x− y)dx

+

∫

∂Ω

[
∂w

∂ν
(x)Γ(x− y)− w(x)

∂

∂νx
Γ(x− y)

]
dsx.

This formula is called Green’s representation formula.
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For a harmonic function u ∈ C1(Ω) ∩ C2(Ω), we have the Green’s formula:

0 =

∫

Ω
(−∆w)udx+

∫

∂Ω

[
∂w

∂ν
u− w

∂u

∂ν

]
ds.

Therefore, we obtain a more general version of Green’s representation formula:

w(y) =

∫

Ω
(−∆w)(x)(Γ(x− y) + u(x))dx

+

∫

∂Ω

[∂w(x)
∂ν

(Γ(x− y) + u(x))− w(x)
∂

∂νx
(Γ(x− y) + u(x))

]
dsx.
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Then, the Green function G(x, y) is defined by

G(x, y) := Γ(x− y) +K(x, y),

where u(x) = K(x, y) is a harmonic function of x for fixed y ∈ Ω such that

∆u = 0 in Ω, u = −Γ(· − y) on ∂Ω.

w(y) =

∫

Ω
(−∆w)(x)G(x, y)dx−

∫

∂Ω
w(x)

∂

∂νx
G(x, y)dsx.
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Therefore, the solution of the BVP

−∆w = f in Ω, w = g on ∂Ω

is written by

w(y) =

∫

Ω
f(x)G(x, y)dx−

∫

∂Ω
g(x)

∂

∂νx
G(x, y)dsx.



Domain Purtabations
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Let Ω̃ ⊂ R
n be a sufficiently large domain such that Ω ⊂ Ω̃.

We consider a family of bi-Lipschitz homeomorphisms

Tt(x) : Ω → Tt(Ω) ⊂ Ω̃, supp(Tt) ⊂ Ω̃.

We assume that Ω ∋ x 7→ Tt(x) is twice differentiable with respect to t. We

also assume that, for i = 1, 2,

∂i

∂ti
Tt(x),

∂i

∂ti
∇(Tt(x)),

∂i

∂ti
T −1
t (x),

∂i

∂ti
∇(T −1

t (x))

are uniformly bounded on Ω× (−ε, ε) for sufficiently small ε > 0.
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Define

S :=
∂Tt
∂t

∣∣∣
t=0

, R :=
∂2Tt
∂t2

∣∣∣
t=0

.

Then, Tt has the Taylor expansion

Tt(x) = x+ tS(x) + 1
2t

2R(x) + o(t2).

Ω and Ωt.



Normal Perturbations
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Let ∂Ω be sufficiently smooth and ρ(x) be a smooth function defined on ∂Ω.

Then, define

∂Ω+ tρ : x+ tρ(x)νx, x ∈ ∂Ω.

The domain Ωt is the domain with ∂Ωt = ∂Ω+ tρ.

∂Ω

∂Ω+ tρ

tρ



Dynamical Perturbations
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Let a vector field S be given on Ω̃ with suppS ⊂ Ω̃.

Then, the domain transformations

Tt(x) : Ω → Tt(Ω) ⊂ R
n

are defined by
d

dt
Tt(x) = S(Tt(x)), T0(x) = x.

In this case, Tt(x) is called a dynamical perturbation .

Note that, for dynamical perturbations, we have

(S · ∇)S = R.
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Let G(x, y, t) : the Green ft. of −∆ on Ωt.

Hadamard obtained the derivative of the Green ft. G(x, y, t) with respect

t ≥ 0:

δG(x, y) := lim
t→0+

G(x, y, t)−G(x, y)

t
, x, y ∈ Ω.

Theorem 1 (Hadamard’s variational formula) Let ∂Ω be of C1,1-

class. For the differentiable perturbation Tt, we have

δG(w, y) =

〈
δρ

∂

∂ν
G(·, y),

∂

∂ν
G(·, w)

〉

1/2,∂Ω

,

where δρ := S · ν.

〈·, ·〉1/2,∂Ω: the duality pairing of H−1/2(∂Ω) and H1/2(∂Ω).



History of the Hadamard Variational Formula
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Hadamard, Mémoire sur le probleme d’analyse relatif à l’equilibre des plaques

élastiques encastrées, Oeuvres, 2 (1968), 515–631.

Garabedian, Partial Differential Equation, Chelsea,1964.

小沢真,領域の摂動と固有値問題、「数学」, 33 (1981), 248 –261.

Suzuki, Tsuchiya, First and second Hadamard Variational formulae of the

Green function for general domain perturbations, Journal of Mathematical

Society of Japan, to appear.

Hadamard (1908):

∂Ω and S(x) are of Cω-class and Tt(x) is a normal perturbation.

Schiffer (1946), Garabedian-Schiffer (1952-53):

∂Ω and S(x) are of Ck-class with sufficiently large k and Tt(x) is a normal

perturbation.

Suzuki–Tsuchiya:

∂Ω and S(x) are of C1,1-class and Tt(x) is a general perturbation.



Eulerian Derivative and Lagrangian Derivative

数学協働プログラム 土屋;ラプラシアンの Green 関数の Hadamard 変分 14 / 36

Ω ⊂ R
n: Ck,1 domain, k = 1, 2.

Ωt := Tt(Ω), t ≥ 0.

ϕ : a function defined in the nbd of Ω.

Consider the Dirichlet problem:

∆u(·, t) = 0 in Ωt, u(·, t) = ϕ on ∂Ωt.

Now, we consider the two kinds of derivatives of u(·, t) with respect of t.

u̇L(x) :=
d

dt
(u(Tt(x), t))

∣∣∣
t=0

, üL(x) :=
d2

dt2
(u(Tt(x), t))

∣∣∣
t=0

u̇E(x) :=
∂

∂t
u(x, t)

∣∣∣
t=0

, üE(x) :=
∂2

∂t2
u(x, t)

∣∣∣
t=0

.

u̇L and üL are called the Lagrangian derivatives,

u̇E and üE are called the Eulerian derivatives.



Eulerian Derivative
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Differentiating u(Tt(x), t) = ϕ(Tt(x)) with respect to t and letting t → 0+,
we have

u̇E + S · ∇u = S · ∇ϕ on ∂Ω.

Therefore, u̇E satisfies

∆u̇E = 0 in Ω,

u̇E = S · (∇ϕ−∇u) on ∂Ω.
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Let Γ(x) be the fundamental solution of the Laplacian. Then, the Green

function G(x, y) is defined by

G(x, y) := Γ(x− y) +K(x, y),

where u(x) = K(x, y) is a harmonic function of x for fixed y ∈ Ω such that

∆u = 0 in Ω, u = −Γ(· − y) on ∂Ω.

G(x, y, t): the Green function of Ωt:

G(x, y, t) = Γ(x− y) +K(x, y, t),

where u(x, t) = K(x, y, t) is a harmonic function such that

∆u(·, t) = 0 x ∈ Ωt, u(·, t) = −Γ(· − y) x ∈ ∂Ωt.
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Therefore, the Eulerian derivative u̇E of u satisfies

∆u̇E = 0 in Ω

u̇E = S · ∇x(−Γ(x− y)− u(x)) = −S · ∇xG(x, y)

= −(S · ν)
∂

∂νx
G(x, y) on ∂Ω.

The solution of the BVP

∆v = 0 in Ω, v = g on ∂Ω

is written by

v(w) = −

〈
g,

∂

∂νx
G(·, w)

〉

1/2,∂Ω

.
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Therefore, we have

u̇E(w) =

〈
(S · ν)

∂

∂ν
G(·, y),

∂

∂ν
G(·, w)

〉

1/2,∂Ω

.

(
u̇E(w) =

∫

∂Ω

∂

∂νx
G(x,w)

∂

∂νx
G(x, y)(S · ν)dsx

)

The first variation δG(x, y) of the Green function is written by, for w, y ∈ Ω

δG(w, y) := lim
t→0+

G(w, y, t)−G(w, y)

t
= u̇E(w)

=

〈
(S · ν)

∂

∂ν
G(·, y),

∂

∂ν
G(·, w)

〉

1/2,∂Ω

.



Hadamard’s Variational Formula — the Second Variation
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Consider the boundary value problem ∆u = 0 in Ω, u = ϕ on ∂Ω. Then, the

solution’s Eularian derivative u̇E satisfies

∆u̇E = 0 in Ω, u̇E = S · (∇ϕ−∇u) on ∂Ω.

Also, üE satisfies

∆üE = 0 in Ω,

üE = −2S · ∇u̇E + R · (∇ϕ−∇u) + (Hxϕ−Hxu) · (S)
2 on ∂Ω,

where Hxϕ is the Hesse matrix of ϕ.

On the case of the Green function, ϕ = −Γ.
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Recall that the Green function G is defined by

G(x, y) := Γ(x− y) + u(x).

The harmonic function u satisfies ∆u = 0 in Ω, u = −Γ on ∂Ω. The second

variation of the Green function is defined by

δ2G(x, y) :=
∂2

∂t2
G(x, y, t)

∣∣∣∣
t=0

= üE(x).

The function üE is written by

δ2G(x, y) = üE(x) =2

∫

∂Ω
S · ∇wδG(w, y)

∂

∂νx
G(x,w)dsw

+

∫

∂Ω
R · ∇wG(w, y)

∂

∂νx
G(x,w)dsw

+

∫

∂Ω
HwG(w, y) · (S)2

∂

∂νx
G(x,w)dsw.
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Theorem 2 (Hadamard’s second variational formula)
Let ∂Ω be of C2,1-class. For the twice differentiable perturbation Tt,
we have

δ2G(x, y) :=
∂2

∂t2
G(x, y, t)

∣∣∣∣
t=0

= üE(x)

=

〈
χ
∂

∂ν
G(·, x),

∂

∂ν
G(·, y)

〉

1/2,∂Ω

− 2(∇δG(·, x),∇δG(·, y))Ω

χ := δ2ρ− ((S · ∇)S) · ν − (δρ)2(∇ · ν)− (S · ∇)δρ+
∂(δρ)2

∂ν
,

where δρ = S · ν, δ2ρ := R · ν and ∇ · ν is the mean curvature of

∂Ω, that is, ∇ · ν =
∑n−1

i=1 κi.

Suzuki, Tsuchiya, First and second Hadamard Variational formulae of the

Green function for general domain perturbations, Journal of Mathematical

Society of Japan, to appear.
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Corollary 3 (Garabedian-Schiffer formula)
Let ∂Ω be of C2,1-class. If Tt is a normal perturbation, we have

δ2G(x, y) =−

〈
(δρ)2(∇ · ν)

∂

∂νw
G(·, x),

∂

∂νw
G(·, y)

〉

1/2,∂Ω

− 2(∇δG(·, x),∇δG(·, y))Ω.

Garabedian, Schiffer, Convexity of domain functionals,

J. Anal. Math., 2 (1952-53) 281–368.
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Corollary 4 Let ∂Ω be of C2,1-class. If Tt is a dynamical perturba-
tion, we have

δ2G(x, y) :=
∂2

∂t2
G(x, y, t)

∣∣∣∣
t=0

= üE(x)

=

〈
σ
∂

∂ν
G(·, x),

∂

∂ν
G(·, y)

〉

1/2,∂Ω

− 2(∇δG(·, x),∇δG(·, y))Ω

σ := −(δρ)2(∇ · ν)− (S · ∇)δρ+
∂(δρ)2

∂ν
.

δ2ρ = R · ν, R = (S · ∇)S.

χ := δ2ρ− ((S · ∇)S) · ν − (δρ)2(∇ · ν)− (S · ∇)δρ+
∂(δρ)2

∂ν
.



The Dam Problem
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DAM

Ω

R1

R2

h1

h2

x1

x2

S1

S2

S1

3

S2

3Γ1

Γ2

Γ
1
3

Γ
2
3

Γ4

DAM: the region of the dam.

Ω: the portion of water flow in DAM.
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Then, the boundary ∂Ω of Ω consists of four parts:

Γ1 = S1 (the impervious part)

Γ2 ⊂ DAM (the free boundary)

Γ3 = S3 (the part in contact with water reservoirs)

Γ4 ⊂ S2 (the part in contact with air)

Rj , (j = 1, 2) : two disjoint reservoirs.
hj (h1 > h2): the height of the water in Rj , (j = 1, 2).



The Dam (Filtration) Problem
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Find the flow region Ω ⊂ DAM and the potential function u defined on Ω which

satisfies

∆u = 0 in Ω,

u = x2 on Γ2 ∪ Γ3 ∪ Γ4,

∂u
∂ν

= 0 on Γ1 ∪ Γ2,

∂u
∂ν

≤ 0 on Γ4,

where ν := (ν1, ν2) is the unit outer normal vector of ∂Ω.

Note that on the free boundary Γ2, both Dirichlet’s and Neumann’s conditions

are imposed.



Trial (Fictitious) Free Boundary Methods
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Ω(0): an initial guess, u(0): solution of

∆u(0) = 0 in Ω(0) with, say,
∂u(0)

∂ν
= 0 on the F.B.

In general, u(0) 6= x2 on the F.B.

From the computed data, define Ω(1) and compute the solution u(1) of ....

To obtain a better understanding on TFBM, we need to have “Calculus of
Variation of the Dam Problem ” w.r.t. domain transformations.



Variational Principle for the Dam Problem
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Suzuki, Tsuchiya, Convergence analysis of trial free boundary methods for the

two-dimensional filtration problem, Numerische Mathematik, 100 (2005)
537–564.

Suppose that we have a set of admissible domains (candidates of solution) of

the dam problem. We denote it by AD. Let Ω ∈ AD. Consider the functions

uΩ, wΩ which satisfy

∆uΩ = ∆wΩ = 0 in Ω,

uΩ = x2 on Γ2,
∂wΩ

∂ν
= 0 on Γ2.

We introduce a variational principle of the dam problem defined by the

difference between uΩ and wΩ.
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Let DΩ(v) be the Dirichlet integral defined by

DΩ(v) :=
1

2

∫

Ω
|∇v|2, for v ∈ H1(Ω).

Define the domain functionals a : AD → R, b : AD → R by

a(Ω) := DΩ(uΩ), b(Ω) := DΩ(wΩ).

Note that, since A(Ω) ⊂ B(Ω), we have

J(Ω) := a(Ω)− b(Ω) ≥ 0.

Moreover, we have

J(Ω) = 0 ⇐⇒ Ω is the sol. of the Dam Problem.



The first variation of a(Ω)
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Consider domain perturbations Tt of DAM such that Ωt := Tt(Ω) ∈ AD for

any sufficiently small t > 0. Define the first variation of a(Ω) by

δa(Ω) := lim
t→0+

a(Ωt)− a(Ω)

t
.

Lemma [Suzuki-Tsuchiya]

Let pΩ := uΩ − x2. Then, we have

δa(Ω) =
1

2

∫

Γ2∪Γ4

(
1−

(
∂pΩ

∂ν

)2)
δρds,

where δρ := S · ν is the normal component of S.



The first variation of b(Ω).
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We would also like to obtain the first variation δb(Ω) of b(Ω) with respect to

the domain transformation Tt:

δb(Ω) := lim
t→0+

b(Ωt)− b(Ω)

t

The first variation of b is more difficult than thta of a, because domain

transformation may cause changes of the mixed boundary condition.

∂(DAM)

Γ4

Γ2



数学協働プログラム 土屋;ラプラシアンの Green 関数の Hadamard 変分 32 / 36

Note that for Ωt, Γ2 and Γ4 depend on t. So we denote them by Γt
2 and Γt

4.

Define

V1(Ωt) :=
{
v ∈ H1(Ωt)

∣∣ v = 0 on Γ3 ∪ Γt
4

}
.

The difficulty here comes from the fact that

w ∈ V1(Ωt) ⇐⇒ w ◦ Tt ∈ V1(Ω) (1)

is not valid in general. If (1) holds for all sufficiently small t ≥ 0, the

perturbation Tt is said to satisfy NPO condition (Non-Peeling-Off).
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Lemma (Suzuki-Tsuchiya)

Suppose that Tt satisfies the NPO condition. Then, we have

δb(Ω) =
1

2

∫

Γ2

|∇swΩ|
2δρds

where δρ := S · ν is the normal component of S, and ∇s stands for the gradient

on the tangential space of Γ2.

Theorem (Suzuki-Tsuchiya)
Suppose that Tt satisfies the NPO condition. Then, we have

δJ(Ω) =
1

2

∫

Γ2

(
1−

(
∂pΩ

∂ν

)2

− |∇swΩ|
2

)
δρds.

Moreover, δJ(Ω) = 0 for any sufficiently small δρ if and only if Ω ∈ AD is the

solution of the filtration problem.

Suzuki, Tsuchiya, Weak formulation of Hadamard variation applied to the
filtration problem, Japan J. Indust. Appl. Math., 28 (2011) 327–350.



TFBM using the Hadamard Variation I
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The Steepest Descent Method (?)

Γ
(k)
2 : the k-th geuss of the free boundary

FV (x) := 1−

(
∂pΩ

∂ν

)2

−

(
∂wΩ

∂s

)2

, x ∈ Γ
(k)
2

A naive iterative scheme is

Γ
(k+1)
2 := Γ

(k)
2 − ǫFV (x)ν,

where ν is the outer unit normal vector at x ∈ Γ
(k)
2 and ǫ is a positive constant.

However, this iteration dose not work at all.



TFBM using the Hadamard Variation II
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The Traction Method or The H1 Gradient Method

Let z(k) ∈ H1(Ω(k)) be the solution of the following problem:

∆z(k) = 0 in Ω(k), z(k) = 0 on Γ3 ∪ Γ
(k)
4 ,

∂z(k)

∂ν
= 0 on Γ1,

∂z(k)

∂ν
= FV on Γ

(k)
2 ,

The traction method is to define iteration by

Γ
(k+1)
2 := Γ

(k)
2 − z(k)(x)ν,

where ν is the outer unit normal vector at x ∈ Γ
(k)
2 .

This method was proposed by Azegami;

H. Azegami, A solution to domain optimization problems (in Japanese),

Trans. of Japan Society of Mech Engs., Ser. A, 60 (1994) 1479–1486
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