

理論化学、計算化学とは?						
理論化学、計算化学:						
理論(モデルや概念)の ご 既知の実験事実を	D構築や 説明、未知	その適用(計算手法の開発、数値計算、紙と鉛筆) Elの物質の性質などを予言				
実験化学:						
多数の実験	皆後にある	る普遍的な理論を導く				
対象:物質の構造	、物質の	の性質、物質の反応				
小サイズの単分子 弱電子相関系 基底状態 時間無依存 量子系、古典系 定常、平衡状態 均一系 温度無依存 古典場	\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow	巨大分子、分子集合系 電子相関系 励起状態 時間発展(ダイナミクス) 量子-古典ハイブッリド 非定常、非平衡状態 不均一系 温度効果 量子場				

Unique Pro	operties of Open-Shell Singlet Molecular Systems			
• Longer acenes possess a nonzero bandgap with a singlet open- shell ground state followed by a triplet state a few kcal/mol				
nigner in	M. Bendikov et al. J. Am. Chem. Soc. 126 , 7416 (2004).			
• High rea	• High reactivity of the zigzag edges of the longer oligoacenes.			
High cha Electron	arge carrier mobilities in the solid state. ic states are characterized by "diradical character".			
K. Yamagua Theory and	chi, T. Fueno, H. Fukutome, <i>Chem. Phys. Lett.</i> 22, 461 (1973); in, <i>Self-Consistent Field:</i> <i>Applications</i> , R. Carbo et al. Eds.; Elsevier: Amsterdam, pp. 727 (1990).			
• Excitation diradcial M. Nakano	on energies and properties are strongly correlated to the l character in the ground state. et al. <i>Phys. Rev. Lett.</i> 99 , 033001 (2007)			
• Diradcia optical r M. Nakano T. Minami,	I character control of optical properties, e.g., nonlinear responses, optical absorption, singlet fission, etc. et al., <i>J. Phys. Chem. A</i> 109 , 885 (2005); <i>J. Chem. Phys.</i> 133 , 154302 (2010); M. Nakano, <i>J. Phys. Chem. Lett.</i> 3 , 145 (2012).			

Two-site model A ⁻ –B [·] with two electrons in two orbitals: Valence configuration interaction (VCI) approach						
Symmetry adapted MOs $\dots g(x), u(x)$						
Localized natural orbitals (LNOs) $a(x), b(x) \langle a b \rangle = 0$						
$a(x) = \frac{1}{\sqrt{2}} [g(x) + u(x)] \qquad b(x) = \frac{1}{\sqrt{2}} [g(x) - u(x)]$						
Basis sets for $M_s = 0$ (singlet and triplet) states $\{ a\bar{b}\rangle, b\bar{a}\rangle, a\bar{a}\rangle, b\bar{b}\rangle\}$, where $ a\bar{b}\rangle = core a\bar{b}\rangle$,						
CI matrix using LNOs						
$ \begin{pmatrix} 0 & K_{ab} & t_{ab} & t_{ab} \\ K_{ab} & 0 & t_{ab} & t_{ab} \\ t_{ab} & t_{ab} & U & K_{ab} \\ t_{ab} & t_{ab} & K_{ab} & U \end{pmatrix} \qquad \qquad$						

19

Poly	cyclic di	phenale	nyl radio	cals: con	trol of di	radical c	haracter
PERO	y = 0.2620	α = 605 a.u.	$\gamma = 51 \times 10^3 a.u.$	Aromaticity of middle rings		Diradical character	
PDPL	<i>y</i> = 0.5833	α = 744 a.u.	$\gamma = 1255 \times 10^3 a.u.$		Small	•	Small
	Ć						
IDPL	<i>y</i> = 0.7461	α = 896 a.u.	$\gamma = 2383 \times 10^3 a.u.$				
	Ś		>				
NDPL	<i>y</i> = 0.8317	α = 1115 a.u.	$\gamma = 3803 \times 10^3 a.u.$				
ADPL	y = 0.8821	α = 1380 a.u.	$\gamma = 5935 \times 10^3 a.u.$				
		∞		LYP/6-31G*	Large	•	Large

Summary
• Diradical character <i>y</i> (= Bond weakness = Electron correlation) is correlated with the excitation energies and properties.
• Open-shell singlet systems with intermediate diradical charcater exhibit enhanced second hyperpolarizaibilities (γ) as compared to conventional closed-shell and pure diradical systems.
 Control of diradical character (in the ground state): Relation to conventional chemical concepts and indices Edge shape, size, and architecture of graphene nanoflakes Quinoid (closed-shell) and benzenoid (open-shell) resonance structures Aromaticity, Multiple bond, Main group elements,
• Examples of diradical/multiradical Diphenalenyl compounds, Geaphene nanoflakes, Open-shell aggregates, etc.
These results demonstrate the high potential of open-shell singlet molecular systems for third-order NLO applications.

