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The semilinear parabolic equation

ut − ∆u = |u|p−1
u in Ω × (0, T ), u|∂Ω = 0, u|t=0 = u0(x) (1)

was introduced pure mathematically, but its profiles of the solution, particularly blowup in finite and in-
finte time, have suggested several principles in mathematical science, and the tools developed to approach
them have gained much generality because of a variety of its mathematical backgrounds; comparison
principle, scaling property, and variational structure, where Ω ⊂ Rn is bounded domain with smooth
boundary ∂Ω and p > 1.

To (1), there is a local in time unique classical solution u = u(·, t), if u0 = u0(x) ∈ C(Ω) for instance,
and henceforth T = Tmax ∈ (0,+∞] denotes its existence time. It is well-known that

T < +∞ ⇒ lim
t↑T

∥u(t)∥∞ = +∞

T = +∞ ⇒ ∥u(t)∥2 ≤ C, J(u(t)) ≥ 0,

where J(u) = 1
2 ∥∇u∥2

2 −
1

p+1 ∥u∥
p+1
p+1 acts as the Lyapunov function:

d

dt
J(u(t)) = −∥ut∥2

2 .

Up to now, three important categories have been noticed in connection with the blowup rate and the
uniform boundedness of the solution.

1. Sub-critical case, 1 < p < ps. We obtain

T = +∞ ⇒ ∥u(t)∥∞ ≤ C

T < +∞, Ω: convex ⇒ lim
t↑T

J(u(t)) = −∞, type I,

where type I indicates lim supt↑T (T − t)
1

p−1 ∥u(t)∥∞ < +∞ and ps =
{

+∞ (n = 1, 2)
n+2
n−2 (n ≥ 3).

2. Monotone increasing case, u0 ≥ 0, u0 ̸≡ 0, −∆u0 ≤ up
0, −∆u0 ̸≡ up

0. We obtain T < +∞ and
type I.

3. Radially symmetric case, Ω = B = B(0, 1), u0(x) = U0(|x|). We obtain

T < +∞, 1 < p < p∗ ⇒ type I
p > p∗ ⇒ ∃type II,

where type II means lim supt↑T (T − t)
1

p−1 ∥u(t)∥∞ = +∞ and

p∗ =
{

+∞ (n ≤ 10)
1 + 4

n−4−2
√

n−1
(n ≥ 11).

The blowup rate is related to the problem of complete blowup of the solution, which means, roughly,
u(x, t) = +∞ for x ∈ Ω, t > T . More precisely, given 0 ≤ ψ ∈ C(Ω) with ψ ̸≡ 0, we take u0 = λψ, where
λ > 0 is a constant. Then, it holds that

λ0 = sup
{

λ > 0 | T = +∞, lim
t↑+∞

∥u(t)∥∞ = 0
}

∈ (0,∞). (2)
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For λ = λ0, Ni, Sacks, and Tavantzis [7] confirmed the existence of a global in time weak solution to
(1) such that u ∈ C([0,∞), L1(Ω, δ(x)dx)), where δ(x) = dist(x, ∂Ω), and henceforth we call it the NST
solution. This NST solution satisfies T = +∞ if either 1 < p < n+2

n and Ω is convex or 1 < p < n+2
n−2 and

the solution is radially symmetric. Consequently, it is uniformly bounded in these cases. When Ω is star-
shaped, n ≥ 3, and p ≥ n+2

n−2 , on the other hand, the NST solution cannot be uniformly bounded globally
in time, because there is no non-trivial stationary solution. Thus, the NST solution blows-up in finite or
infinite time, and the first case of the NST solution, T < +∞, is not consistent to the complete blowup.
Later, Galaktionov and Vazquez [2] studied these alternatives in detail. First, the blowup in finite time
is always complete in the case of p = n+2

n−2 and the soluiton is radially symmetric, and consequently the
NST solution blows-up in infinite time if

Ω = B, ψ(x) = Ψ(|x|) ≥ 0.

Next, the NST solution always blows-up in finite time in the case of n+2
n−2 < p < 1 + 6

(n−10)+
and

Ω = B, ψ(x) = Ψ(|x|) ≥ 0, Ψr(r) < 0 (0 < r ≤ 1).

This talk is concerned with the critical Sobolev exponent p = n+2
n−2 , while the solution is not necessarily

radially symmetric. The exponent p = n+2
n−2 for n ≥ 3 is due to Sobolev’s imbedding H1

0 (Ω) ⊂ L
2n

n−2 (Ω),
which results in the following structures:

1. There is energy quantization in the non-compact Palais-Smale sequence to J(u) ([3]).

2. Problem (1) is well-posed in X = H1
0 or X = Lp+1, but the existence time T is not estimated below

by ∥u0∥X , which means the ill-posedness concerning the weak topology ([3]).

Under the presense of the above described critical structures of variation, the global in time behavior of
the solution is seriously involved by its energy level in this case. To describe details, we introduce We
take, furthermore,

I(v) = ∥∇v∥2
2 − ∥v∥p+1

p+1

d = inf
{

sup
λ>0

J(λv) | v ∈ H1
0 (Ω) \ {0}

}
potential depth

S = inf
{
∥∇v∥2

2 | v ∈ H1
0 (Ω), ∥v∥p+1 = 1

}
Sobolev constant

W =
{
v ∈ H1

0 (Ω) | J(v) < d, I(v) > 0
}
∪ {0} stable set

V =
{
v ∈ H1

0 (Ω) | J(v) < d, I(v) < 0
}

unstable set,

where S > 0 depends only on n and it holds that d = 1
nSn/2. The stable and unstable sets W and V are

invariant with respect to (1). Then, it holds that

u(t0) ∈ W, (0 ≤ ∃t0 < T ) ⇒ T = +∞, ∥u(t)∥∞ ≤ C

u(t0) ∈ V, (0 ≤ ∃t0 < T ) ⇒ T < +∞,

and this implies the following theorem.

Theorem 1 Let Ω be star-shaped, n ≥ 3, p = n+2
n−2 , and u0 ≥ 0. Then we obtain the following alternatives

for the solution u = u(·, t) to (1):

1. T < +∞ and limt↑T ∥u(t)∥∞ = +∞.

2. T = +∞ and limt↑+∞ ∥u(t)∥∞ = 0.

3. T = +∞ and limt↑+∞ ∥u(t)∥∞ = +∞.

The third cse of the above theorem is called the blowup in infinite time, which is equivalent to T = +∞
and u(t) ̸∈ W ∪ V for t ≥ 0. The second theorem is concerned with the NST solution. Thus, given
0 ≤ ψ ∈ C(Ω) with ψ ̸≡ 0, we take u0 = λψ and define λ0 ∈ (0,∞) by (2).
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Theorem 2 Let Ω be star-shaped, n ≥ 3, and p = n+2
n−2 . Then we have the following cases:

1. If 0 < λ < λ0, then T = +∞ and limt↑∞ ∥u(t)∥∞ = 0.

2. If λ = λ0, then limt↑T J(u(t)) ≥ d, and the solution blows-up in finite or infinite time.

3. If λ > λ0, then T < +∞.

To prove the third case of the above theorem, we use Struwe’s energy quantization principle [8]. The
next theorem describes the relation between the blowup rate and the energy level.

Theorem 3 Let Ω be bounded, n ≥ 3, p = n+2
n−2 , u0 ≥ 0, and T < +∞. Then, we have the following

alternatives.

1. limt↑T J(u(t)) = −∞.

2. If ∥u(t)∥∞ = u(x(t), t) and r(t) = ∥u(t)∥−
p−1
2

∞ , it holds that

r(t)
2

p−1 u(x(t) + r(t)z, t) → v∞(z), locally uniformly in Rn,

where v∞ = v∞(z) is the solution to

−∆v∞ = |v∞|p−1
v∞, 0 ≤ v∞ ≤ v∞(0) = 1 in Rn. (3)

If Ω is convex, it holds that limt↑T (T − t)
1

p−1 ∥u(t)∥∞ = +∞, i.e., r(t) = o
(
(T − t)1/2

)
.

For radially symmetric positive solution, we have always type I blowup rate by p∗ > n+2
n−2 , and

consequently, T < +∞ is excluded in the second case of Theorem 2. Thus, the NST solution blows-up
in finite time if Ω = B, p = n+2

n−2 , and ψ(x) = Ψ0(|x|) ≥ 0; compare this with the proof of [2] using the
complete blowup of the solution. This profile of the NST solution, however, is valid under the presense
of the covexity and the symmetry of Ω.

Theorem 4 Let p = n+2
n−2 , n ≥ 3 and Ω be convex and symmetric with respect to xi = 0 (i = 1, 2, . . . , n).

Let, furthermore, 0 ≤ u0(x) ∈ C(Ω) be symmetric with respect to xi = 0, and be decreasing in xi > 0
(i = 1, 2, . . . , n). Then, for the solution u = u(·, t) to (1) it holds that

T < +∞ ⇒ lim
t↑T

J(u(t)) = −∞,

and in particular, the NST solution blows-up in infinite time by Theorems 2 and 3. Thus, the third cse
of Theorem 1 actually occurs.
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