


A Simplified System of Chemotaxis

ur =V - (Vu —uVo)
1 :
—szu——/u in Q2 x (0,%)
2] /2

0 o0 0
P =0  onoax(0,T)
ov ov ov

/’UZO
Q

where 2 C R"™is a bounded domain with smooth
boundary 92, v the outer normal vector.



Theorem 1 (formation of collapse)

If n =2 and T = Tmax < +o00, then it holds
that

w(z, t)de — Y m(xg)dzo(de) + f(x)dx
ToES
as t 17T in M(2), where
0< f=f(x) e LY NC(Q\S)
S = {xo € Q | there exists (x,tr) — (xg,T)
such that u(xy,t,) — +oo}.



Theorem 2 (mass quantization)

We have

81 (xg € Q)

m(xg) = mx«(xg) = { 41 (xg € 02)

and hence it holds that

28(S N Q) + #(S N 9Q) < |luglly /(4)

by [[u()]ly = lluollz-
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”Formation of the quantized chemotactic collapse is proven”.




Modellings

a) In the macroscopic description, the first
equation indicates the mass conservation

ut:_v°j7

where j = —Vu + uVv denotes the flux of wu.

Thus, we impose the null flux boundary condi-
tion.



Here, u = u(x,t) denotes the density of cellular
slime molds, while v = v(x,t) is the concentra-
tion of the chemical subsequence, and there-
fore, v = v(x,t) is a carrier; the diffusion —Vu
IS competing the chemotaxis «Vv derived from
the phenomenological relation:

7 = —Vu—+ uVo.



This system also arises in the theory of mate-
rial transport, called the Smoluchowski equa-
tion. There, u = u(x,t) stands for the particle
distribution, and the second equation describes
the formation of self-attractive field v = v(x, t)
derived from this:

v(x,t) = /Q G(z, 2Nu(z', t)da'
G(z,2) = Mz —2")

— 417'(' E 133 | (n=3)
IOg o] (n = 2),

where G = G(a:,:z:’) is the Green’s function.

T his law stands for the formation of a chemical
gradient in the context of biology.



b) A microscopic modelling uses the master
equation, which is reduced to the Smoluchowski
equation via the Kramers-Moyal expansion
derived from the master equation, e.g.,

op _ _
—= = T+ Pn—1+ n+1Pn+1 — <T7;|_ + 1T, )pn-

ot n—1
transient probabilities
L
1, In

Wn-1/2  Wp41/2
/'

control species



Kramers equation is a kinetic model under the
presense of the friction-fluctuation. Thus,

uN(dz, dv,t) = chgxi(t)dx ® 5vi(t)(dv)

— f(z,v,t)dzdv
holds as N — 4oo with Nm =~ 1, where m
denotes the mass of particles. The adiabatic
limit of the self-repulsive particle is the drift-
diffusion model on the semi-conductor devise,
while the vortex equation

wi =V - (Vw — wVTe)
—AY = w in R® x (0,7),

is derived from the Newton equation, where

_ [ 0/0x;
v={ 5 )

for x = (x1,22).
The second moment is taken in these Kramers-

Moyal expansions to deduce the kinetic equa-
tion.



ODE Newton Langevin
Kinetic Jeans-Vlasov Kramers-Poisson

PDE Euler Keller-Segel
(Smoluchowski)

Stationary  Semilinear elliptic Semilinear elliptic
eigenvalue problem  eigenvalue problem
(non-linearity unknown) (exponential non-linearity)

Clustered  Hamiltonian flow Gradient flow

Physics Conservation laws Free energy

Mathematics Chaotic motion Quantized blow-up mechanism



C) Mesoscopic modelling uses Helmholtz' free
energy,

A=U—TS,

defined by the inner energy minus entropy. Since
w(dr,t) = u(x,t)de denotes the particle distri-
bution, it holds that

1 ~1
Fu) = /Qu(logu— 1) — 5<(—AJL) wyu).,
where v = (—=A ;)" 1w if and only if
1 _ Ov
—szu——/u in 2, — =0 on 9%
| /Q d

| v
o=
Q

and



This simplified system of chemotaxis is a model
B equation,

ur =V - (uVIF(u)) in Qx (0,7)
u§5f(u) =0 on 902 x (0,7)
v

and consequently, we obtain the total mass
conservation and the free energy decreas-

ing:
d
—/u=O
dt JQ

d _ >
~F(u) = - /Qu|V5.7-"(u)| <o.



Actually, phenomenological equations of non-
equlibrium thermodynamics are derived from
several free energies.

Model A (Allen-Cahn type)

apr = —0F (p)

d

—F(p(-,t :—/ 2 <0,
o (p(+ 1)) ol A

The decrease of total free energy is realized,
and the stationary state is described by

0F(p) = 0.



Model B (Cahn-Hilliard type)

or =V - (MVIF(p))

9
M—éf(@\ — o,
ov o
=

d

- ’ t) =20

dt /Q (1)

d

“F(e( ) = — [ MIVoF(e( )P <0,

The conservation of the total ”"order param-
eter” is realized besides the decrease of the
total free energy, and consequently, the sta-
tionary state is described by

5F(p) = 0, / — A
(¢) o ¥



Structures

a) Duality: Weak formulation, Hardy-BMO pair,
and convex conjugate are hidden in this sys-
tem.

al) The first two of the following Riesz’ rep-
resentation theorems are not reflexive.

1. C(Q) =2 M(Q)

2. LY(Q) = L>(Q)

3. L2(Q) = L2(0)



An Ll control: concentration

Formation of the delta function (collapse) has
the origin in

C'(Q) =2 M(Q).



a2) The reflexive Hardy-BMO, or the Zygmund
- John-Nirenberg duality is observed in the mean
field hierarchy with the entropy - Gibbs mea-
sure paring.

Boltzmann principle (-function
v v
Entropy Gibbs measure
| | |
M1 12 C —+L>

Llog L < » EXP



a3) Entropy and the Gibbs measure are the
convex functionals on the Hardy and BMO spaces,
respectively. Then, there is a variational dual-
ity derived from the Legendre transformation.



Fundamentals of Convex Analysis
1. X is a Banach space over R

2. F: X — (—o00,40o0] is proper, convex, lower
semi-continuous.

1. The Legendre transformation F* : X* —
(—o0, +o0] is proper, convex, lower semi-
continuous, where

F*(p) = sup {(z,p) — F(z)}
reX

2. Fenchel-Moreau’s duality holds as F** = F,
where

F**(z) = sup {{(z,p) — F*(p)}
peEX*



Toland duality (1978, 1979):

F,.G: X — (—o00,4+00] prop., Cc'x, l.s.c.

J(2) = { G(z) — F(z) (z € D(Q®))
+ 00 (otherwise)
soN _ ) F*(p) —G*(p) (p€ D(F*))
J*(p) = { +Oop ! (gtherwise)
L(x,p) =
{ F*(p) + G(z) — (z,p) ((=,p) € D(G) x X*))
+ 00 (otherwise)

—

inf L(z,p) = inf J*(p) = inf J(z).
(z,p)EX X X* (@, p) pEX* (p) r€X (z)



b) Scaling: Typical examples

l1<p<oo, >0

—Av =P

vp(x) = p?/ P~ Dy ()
= —Av, = vﬁ
up — Au = uP

ut(x,t) = p2/ =Dy (pz, 42t)

iuf—Au“ zuﬁ,

which guarantees the hierarchical argumet (blowup
anlaysis).



Self-similar transformation

1. Backward self-similar transformation

v — Av = P
2(y,s) = (T — )Y/ P Vy(a, 1)

y==z/(T —t)/2, s= —log(T —t)
-
zS—Az—I—g-Vz—I— ° = 2P,

2 p—1

induces the classification of the blowup rate

Type (I) & O ((T — )=t/ =1
Type (II) < the other case



2. Forward self-similar transformation

vy — Av = VP

(. 8) = (t+ 1) To(z, )
y=uz/(t+ 1)1/2, s=log(t+ 1)
—

Y z
—Az==-V
Zs z 5 z—l—p_l

describes the asymptotic profile of the solution
globally in time.

+ 2P,




Plan

1. description of the proof

2. recent developments and related topics

3. two aspects of self-organization

4. numerical simulations

5. life of cellular slime molds (movies)



I. Description of the proof

I.1. Semi-analysis of Childress-Percus (1981)

1. Dimension 2 is selected for the formation
of collapse.

2. Threshold mass is realized in the stationary
state.



5—%




Since total mass conservation holds as
feall, = A,
if z ~ 6, then it holds that u ~ §~™. Putting V ~ 61, we obtain
§—1+3n/2 (50 50 5—1—|—n/2) — 0

5 (50, -,5—1+"/2) —0

us — V- (uVov) — Au =0
1

—u+— [ u—Av=0
Q| Jo

under the agreement of v ~ §1="/2, t ~ §11"/2. Then, n = 2 is selected from
the balance of the above relations i.e., the scaling.



From the model (B) profile, the stationary state is defined by

O0F (u) =0, /u:)\
Q
for A = ||upl||;. This means

logu — (—A 1) 'u = constant, / u=A

Q

by
1
F(u) = / u(logu — 1) — 5 (=Ayr) tu,u)
9)
Using
A v
v=(—-Asp) "u, u= 25

this results in the dual form,

ev 1
—A@zA(———) in €2
fQ ev Q]

@:O on 0f2, /v:O,
31/ 9]

a nonlinear elliptic eigenvalue problem with nonlocal term.



Such exponential nonlinearity competing two-dimensional diffusion arises in
several areas:

1. system of chemotaxis

2. fundamental equation of material transport
3. vortex point mean field

4. self-dual gauge theory

5. normalized Ricci flow.

Mathematical principle of these elliptic problems is summarized by the quan-
tized blowup mechanism. Actually, Childress-Percus picked up the thereshold
value 87 by the (radially symmetric) exact solution of the vortex point mean
field equation.



D<axk1l

et Q

N _p 0Q)
ov

—-Av+av=A1

Numerical computation of
Childress-Percuss (1981)

A={lull

87
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Correction of the Nanjundiah - Childress -
Percus conjecture from the study of the sta-
tionary state:

1. If n = 2, a quantized blowup mechanism is
realized in the family of stationary states.

2. It not only suggests the L! threshold, but
also is the origin of the quantized blowup
mechanism of the non-stationary state.

3. First, 87 had been conjectured as a global
L1 threshold from the study of the station-
ary problem. Then, it was noticed that the
boundary blowup reduces it to 4.



In spite of this motivation based on the mean field hierarchy, mathematical
treatments of the non-stationary state are completely different from those of the
stationary states.

In other words, mean field hierarchy is a similarity rather than the continuity,
e.g., atoms are never infinitessimally small moleculars.



I.2. Localization - Symmetrization
Global existence criteiron

Theorem. (Nagai-Senba-Yoshida 1997, Biler
1998, Gajewski-Zacharias 1998)

||’U,OH1 < 4m = Tmax = +o0.

T his criterion is proven by the decrease of the
free energy and the Trudinger-Moser inequal-

ity.



First, the dual Trudinger-Moser inequality
inf {F(u) |u>0, ||ju||; =41} > —o0,
e.g., guarantees

sup ||u(t)||LlogL < +00
t>0

by A = ||up||; < 47, and then

T = +o0, sup ||u(?)], < +o0
£>0

follows from Moser’s iteration or the maximal regularity.



Proof of Theorem 1 (Formation of collapse):

Formation of collapse is proven by the anti-
blowup criterion of the solution locally in space-
time.

1. First, using a nice cut-off function, we prove
this at each isolated blowup point using the
Trudinger-Moser inequality and Moser’s it-
eration scheme.

2. On the other hand, e-regularity holds as

lim limsup ||u(-,t)|| ;1 < egp

:>£I30€3,

i.e.,

0 €S =

lim limsup ||u(-,t)|| 1 > €p,
R0 1 Tmax L (QﬂB(xo,R))

where g > 0 is an absolute constant.



3. Then, we replace

lim lim sup ||u(-, t)]| ;1 > g
i fim sup | L1 (@nB(0,R))
by
lim liminf ||u(-,t > £0.
R10 t1Tmax [Ju( )HLl(QﬁB(xO,R)) ~ £Q

In fact, if this is the case then we obtain

1S < 400

by ||u(-,t)|l; = ||ugl|{, and therefore, any blowup
point is isolated and we are done.



4. This replacement is justified by the method
of symmetrization applied to the weak formu-
lation of the problem:

C ot = [ uC.080

o [ [ petaayute, ut deds

20 . e 0 .
where ¢ € C'<(£2) satisfies 8—‘5‘89 = 0 and
po(@, @) = V() - VaG(z,2")
+Vo(x')  V.G(x,2") € LP(Q x Q).

Here, we emphasize the role of the symmetry
of the Green’s function,

Gz, x) = G(z,2),

describing the law of the action and the reac-
tion.



5. In more detail, we obtain

d
- [ e@ae, s <

from this formulation, which means that any
local mass is of bounded variation in time.

Then we can replace the lim sup condition by
the liminf condition:

0 €S =
o v
IlrpTlTnf ||u(t)||L1(QﬂB(xO,R)) >eo (O<K'RK 1),

which implies the formation of collapse,

w(z,t) = m(z0)dzg + f(2)

ToES
with

m(zg) > m«(zo).



1.3. Weak continuation - self-similarity

Mass quantization (Theorem 2) is a "local”
blowup criterion, while the global blowup cri-
terion is also obtained by the above mentioned
weak formulation, using the second moment.



A simple case (Biler-Hilhorst-Nadzieja 1994)

u =V -(Vu—uVv), v=Txu  inQx(0,7)

ou ov
— —u— = Q T
5 Y3, 0 on 002 x (0,7,
where I' = 5= log T - We obtain |lu(t)|l; = |luol|; and if ©Q is star-shaped, then

—/|x| (2, 1)d / 2 (Vu - uVo)

= / (x - V)u+/4u—i—2ux Vo dx

Gl Q
< 4N +2 // u(z,t)z - VI (z — 2" )u(z', t)dx’'
Qx€Q2
=4\ + // (x — ') - VI (z — 2" )u(z, t)u(z’, t)dedx’
QxQ
)\2

— 4\ -
27

Thus, A > 87 = T = Ti,ax < +00. This argument is adopted by several authors
for the study of hyperbolic, Euler-Poisson, and Schrodeinger equations.



In our problem, high concentration with locally
over mass quantization implies blowup, where
fine profiles of the Green’s function near the
boundary are used.

Theorem. (Senba-S. 01)

In > 0: an absolute constant, s.t.

r0€Q, 0<RK1
1

2
— r— X unlx) <
R2 /QmBQR(a;O) | o7 uol@) <m

Jorus s oy 10D > m(20)
—

T = Tmax — O(Rz) < —|—OO

From the proof, this criterion is valid even to
the weak solution.



Weak solution
0 < p=pldr,t) € Cu[0,T),M(Q)),0<3v=uv(t) c L=*(0,T:£&) s.t.

v(t)|o@ym = 1 ® pldzdz’,t)  ae. t
p € X =tel0,T)— (p,u(dz,t)) loc. a.c.

(oo nldr, 1) = (Mg, u(de,0) + ¢ (o r(1)  ac. t,

where
E={p, o€ X} +C(QAx Q) C L xNQ)
X = {gp c C*(Q) O

oo~}
po(z,2') = Vo(x) V,G(z,2") + Vo(z') - Vo Gz, ).




Generation of the weak solution

{ux} classical solutions on Q x [0,7T), ||Juox|; < C = Fsub-sequence s.t.
ug(z,t)de — “p(de,t) in C.([0,T), M(Q)),

a weak solution.

Blowup of the weak solution

3n > 0 absolute constant s.t.

(Pzo, Ry 1(d,0)) > mu(z0)

1 2

2 <’33 — Zo| 90x0,2R7M(d$70)> <n

= T = Tymax = o(R?). Here and henceforth, ¢,, r denotes a nice cut-off
function aroud xg with the support radius R, and T nax denotes the blowup
time of the weak solution.



If ug = up(x) > 0 is smooth and T = Ty« < +00, then Theorem 1 (forma-
tion of collapse) guarantees

p(de,t) = u(z, t)de € C,([0,T], M(Q))
p(de,T) Z m(xg)dz, (dz) + f(z)dx

with m(xg) > m.(xp).

In case m(xg) > mx(xg) for Fz¢ € S, therefore, this p(dx,t) is not continued
after t = T as a weak solution, because

(@0, Ry p(dx, T)) > mu(z0)
1

ﬁ <’33 - CUO|2 pro,2R7M<dx7T)> < Ui

for any 0 < R < 1.



. Thus, the formation of an over-quantized
collapse

m(zg) > ms(zg)

in finite time implies the instant blowup of
the solution.

. i.e., Weak post-blowup continuation assures
mass quantization,

m(xg) = mx«(z0).

. The Kramers-Poisson equation, on the
other hand, admits a weak solution globally
in time, when the initial value is bounded.

. In spite of this, we do not obtain the well-
posedness in the space of measure.



Based on these observations, we use the rescaled
variables and hierarchical argument to com-
plete the proof of mass quantization. The
parabolic envelope justifies this rescaling.

1. Parabolic envelope

1. For the nice cut-off function ., r = ¥z, r(®)
we confirm

d —2
— ot < CR™?,
[ uC D | <
where 0 < R < 1. This implies
‘<90:130,R7H'('7T)> - <Q0:B0,R7/J’(7t)>‘
< CR™ (T —t)
by

p(dz,t) = u(x, t)de € C«([0,T], M(2)).



2. Since 0 < R < 1 is arbitrary, we can put
R = bR(t)
for given b > 0 in the above inequality, provided

that 0 < R(t) = (T —t)1/2 < p~1:

(#ao,0r(6) 1T ) = (Pa br(y (1)
< COb 2.

3. This implies

im sup m(@0) = (Pugbr(ry H( )| < CHT2
for xg € S by
p(de, T) = > m(zg)dzo(dz) + f(z)dz.

€S



4. In particular,

m”frnoo Iir?TsTup Ks%o,bR(t), u(-,t)> — m(wo)\ =0
and thus, infinitely /arge parabolic region in
terms of the backward self-similar transforma-
tion around the blowup point (=parabolic en-
velope) contains the whole blowup mechanism,
where

R(t) = (T — t)1/2
p(dz,t) = u(x, t)dx

forO<t<T.



2. Backward scaling

If T'="Tmax < +00, g € S, and
2(y,s) = (T — t)u(z, 1)
y= (x—z0)/(T—1t), s=—log(T —1t),
then
2s =V - (Vz—2zVw — yz/2)
0=Aw+z—e"°)\|9|
in Ugs_j0g7e® 2 (2 — {20}) x {s} with

0z ow
— = — =0
ov ov

ON Ugs_jog e/ ? (82 — {z0}) x {s}.



3. Generation of the weak solution

Vs, — +oo, H{s,} C {sp} such that

2(y, s + sp.)dy — ¢(dy, s)

in Cx(—o00,+00; M(L)), where ¢ = ((dy, s) is a
(rescaled) weak solution to

25 =V (V2 — 2V(w + |y /4))
0z

— 1 =0

ovlr,

Vuw(y,s) = /LVI’(y —y)z(y', s)dy,

and L is R? if 2o € Q and a half space with
0L parallel to the tangent line of 92 at g if
xo € 02, and

1 1
M(y) = — log —.
2w 7 y|



All the cases are reduced to L = R? by the
reflection:

26 =V -(Vz—2V(w+ |y|2 /4))

Vw = VI %z in R2 x (—o0, +00).

The parabolic envelope, on the other hand,
guarantees

m(zg) = C(R?,s)

m(zg) (xz0 € S2)
{ 2m(xg) (xg € ON) > 8,

and therefore, we have only to derive
m(zg) < 87

to complete the proof of mass quantization
(Theorem 2).



4. Second moment applied to the rescaled
system

We use the argument of Kurokiba-Ogawa (2003)
hierarchically.

Since this (rescaled) weak solution is global in
time, method of the second moment assures
that the sufficient concetration at the origin
implies

m(zg) = ((R?,0) < 8.

e.qg.,

If ¢ = c(s) satisfies

0<d(s) <1, —1<e(s) <O, (s >0)
| s—1 (0<s<1/4)
=10 (s>,

then, Ve > 0, 3y > 0 such that

(c(ly[?) + 1,¢(dy,0)) < n
= ((R?,0) < 87 +=.



In fact, we obtain

ey +1,¢(dy, )

<C <C(|y|2) + 1, ((dy, S)> + dm(xo) {4 —

21

m(zo) }

for m(zo) = ((R?,s) > 8x, and this implies the above criterion.



5. Self-similarity

The above mentioned concentration condition
IS moved by the self-similarity and the transla-
tion invariance of the rescaled system, because
any initial data "looks like” concenrated at the
origin by this transformation.



Actual self-similarity to the rescaled limit equation is achieved by the trans-
formation

2(y,s) =e "A(y,s), w(y,s)=B(y,s), vy =e "y, s=-e"*
This implies the pre-scaled semi-orbit in the whole space,

Ay =V - (VVA-AV'B), VVB=VI'xA inR? x (—0c0,0),
which is invariant under

At (y, s) = p* A(py, p*s), B*(y,s) = B(uy, u*s)

for ;4 > 0. This structure, together with the translation invariance in time of
the scaling limit equation, removes the concentration condition

(elly) +1,¢(dy,0)) < 6

to guaratee ¢((R?,0) < 8.



More precisely, we obtain

<C(|y\2) + 17C“(dy73)> >n, (00 < s < +00)

for
¢*(dy, s) = pe™*((ne™*"*dy, —pu?e™)
in case m(zo) = ((R?, s) = (*(R2,s) > 87 + ¢, and then

(e(3191") +1,¢(dy, —5)) >

for any § > 0. We obtain a contrdiction by applying this criterion to {(dy, s+ §),

(e(31y*) +1,¢(dy,0)) >

and then making s | O.
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Structure of the simplified system

bounded variation in time
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mass quantization\ <
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II. Recent developements and related topics

II-1. Formation of sub-collapse

Similarly to the parabolic envelope, it follows that

1(s) = (o> .C(dy,5)) < C (00 <5 < 00),

and then we obtain
dl

E pu—
by the mass quantization, ¢((R?, s) = 8. This implies I(s) = 0, while

I (—o00 < 5 < 0)

C(dy,s) = Y 878y, (dy) + g(y. s)dy

yOBs

holds with 0 < g(-,s) € L'(R?) for each s. Consequently, we obtain the forma-
tion of sub-collapse
2(y, 5+ 8')dy = m.(0)do(dy)

in M(R)?) as s’ 1 +00. Consequently, the whole blowup mechanism is en-
veloped in the hyper-parabola, the infinitely small parabolic region, and in par-
ticular, any xg € S is of type (II):

. 2 =
%r%l R(t)” |u() L= (2nB(2o,bR()) = T°

for any b > 0, wherer R(t) = (T —t)'/2.



II-2. Blowup in infinite time

The collapse numer estimate is improved by

24(Q2NS) + (02N S) < |luglly /(4),

and hence ||lug|l; = 41 = Tmax = +o0.

If

lm ||u(t = 400
Jim Jlu(t) e = +

in this case, there is {t%} C {t,} such that
u(w, t+t))dr — 4md,pydr with t € (oo, +00) =
z(t) € 092 satisfying

dx

— =41V R(x),

dt TV R(z)
and hence it holds that

d

—R(xz(t)) > 0,

_R(a(1) >
where

R(z) = |G(z,2") + % log ‘:1: - a:'” I—

Hi X



The chemotactic collapse is formed in infinite
time at a local maximum point of R on the

boundary and then moves to that of local min-
imum.



In the radially symmetric case, the blowup in infinite time does not occur
to A > 8m. Thus, the whole dynamics has been clarified in this case.

1I-3. Higher-dimensional case

1. There are type (I) and type (II) blowup in 3 < n < 9 and n > 11,
repsectively (Herrero-Medina-Velazquez, Senba, Mizoguchi-Senba, ...).

2. There are critical exponent and threshold-like phenomena, for the porous
medium diffusion (Luckhaus-Sugiyama, ...).

II-4. Perturbed nonlinearity

1. There is a formation of collapse (Kurokiba-Senba-S.).

2. There is an ill-posedness because of the multiple existence of the stationary
state (Ishiwata-Kurokiba-Ogawa).



I1I-5. The other reduction
Full system of chemotaxis is involved by the relazation time 7 > O:

euy =V - (Vu — uVo)

1

T =Av+u—— [ u in Q x (0,7)
o /s

ou ov  Ov

E—UE—E—O OH@QX(O,T)

/v:O,
Q

Q) c R? : bounded domain
0f) : smooth

e, 7 > 0 : constans

where

v : the outer normal vector.

There may be two reductions, 7 = 0 (simplified system) and € = 0 (non-local
parabolic equation).



e = 0: non-local parabolic equation (Wolansky 1997)

e’ 1
vav—l—A( — ) in 2 x (0,7)
t erv 1Y
@—O 092 x (0,T)
5, on :

/v:O.
Q

1. lack of the weak formulation, i.e., compensated compactness via sym-
metrization is invalid.

2. dis-quantized blowup mechanism in some case (Kavallalis-S. preprint).



Dual variation guarantees the equivalence of the particle density and the
field distribution in the stationary state, while this is not the case of non-
stationary formulations.

Lagrangian
(full system)

|

unfolding stationary state unfolding
(mean field equation)
/ duality \4
Free energy < » Field functional
(simplified system) (non-local parabolic equation)

quantized blowup mechanism disquantized blowup mechanism



Some other systems share the same stationary
state. If Q = S2, A\ = 8,

w w 1
9 _ Awa[ - in Q x (0,7T)
ot Joev [

is a normalized Ricci flow. The general case
of the compact Riemann surface €2 and A > 0
still describes several physical phenomena:

1. expansion of a thermolized electron cloud

2. central limit approximation to Carleman’s
model of the Boltzmann equation

3. thin ligquid film.

We obtain the global existence for any A > 0O
and w-limit convergence to the stationary state
for A < 87 (Kavallais-S. in preparation).



II-6. Tumour growth models

Since the formation of field is restricted to the cells, the elliptic equation is
replaced by ODE in tumour growth equations.

Othmer-Stevens’ model

pe = DV - (Vp — pV log ®(w))

wt:F(w,p) in 2 x (07T)
Op 0 _
3 5logw—0 on 002 x (0,T)

on the chemotaxis aggregation of myxobacteria reads;
p: = DV - (Vp —apVv)
Vg =P in Q x (0,7)
Op Ov
— —p—=20 o) x (0, T
ov ov o < (0,7)
if ' = wp and ® = w®, where v = logw. It has a Lyapunov function, and the
solution exists gloablly in time if n = 1 (Rascle 1979).



It is also reduced to the evolution equation with strong dissipation,
vy = DAvy — aDV - (v; V).
In the case of n = 1, there are solutions satisfying
1. limypoo inf w(-, t) = 400 if a = —1 (Levine-Sleenman 1997)
2. Thax < +00 if a =1 (Levine-Sleenman 1997, Yang-Chen-Liu 2001).

The first case occurs to any n if ®(w) is saturated (Kubo-S. 2004).



Anderson-Chaplain model

ne = DAn —V - (x(¢)nVe) — poV - (nV f)

fe = pn—onf

cy = —mnc in Q x (0,7)

on dc Of

61/_8V_81/_0 on 02 x (0,T)

describes the tumour angiogenesis, where

x(e) = 22
1+ ac

For small initial data the solution converges to the ODE solution, while there
is a Lyapunov function in the case 5 — v f < 0 (Kubo-S.-Hoshino 2005). Then,
we obtain the global existence of the solution if n = 1 (S.-R.Takahashi).



II-7. Structure of the dual variation

1. Several model (C) equations of the phase field theory are combinations
of the model (A) and model (B) equations using Lagrangian ...Landau-
Ginzburg and Penrose-Fife theories for critial phenomena such as phase
transition, phase separation, hysteresis.

2. There is semi-unfolding-minimality in several fundamental equations in
fluid mechanics ... Euler-Poisson, MHD.

T.S., Mean Field Theories and Dual Variation, Elsevier, submitted.



II-8. Quantization

1. Energy quantization...harmonic map, H-surface, critical Sobolev expo-
nent.

2. Mass quantization...self-dual gauge theory, stationary vortex point /filament
mean field, plasma confinement.

3. L? quantization...gauge-invariant Schrodinger equation.

There are different principles with common phenomena?

S.-F. Takahashi, Nonlinear eigenvalue problem with quantization, preprint.



I1I-9. Emergence observed in the simplified system of chemotaxis for
n =2

If tp, 1T, b>0, and r(tx) | 0 satisfy

liIICIl sup T(tkz)2 Hu(tk)HLoo(QmB(a:O,%r(tk)) < 100,
—00

then it follows that
lim Foy pr(e,) (u(te)) = +o0,

k—oo

where

Fr(u) :/B( o u(logu — 1)
Lo,

1
——// G(z, 2" ) u ® udrdx’
2 ) JonB(eo,R)xQNB(z0,R)

stand for the local free energy around the blowup point xy. Thus, the free
energy is enclosed around the collapse in space and time (emergence).



Parabolic envelope =
Infinitely large parabolic region

Hyper-parabola =
Infinitely small parabolic region



Definig the blowup rate r(t;) | O by

Jim r (1) ()| oo Bagbr (1)) < 09

for any b > 0 and

lim lim sup ‘Hu(tk)”Ll(QﬂB(gco,br(tk)) - m*(a;O)‘

0 k—oo

= 0,
we have summarized that
"Mass and entropy are exchanged at the

wedge of the blowup envelope, creating a
clean, quantized self’.

- S., Free Energy and Self-Interacting Parti-
cles, Birkhauser, 2005.



III. Two aspects of self-organization
Original Keller-Segel system:

ur = V- (dy(u,v)Vv) = V - (d2(u, v) Vo)

vy = dpAv — kruw + k_1p+ f(v)u

wy = dyy Aw — kyvw + (k1 + k2)p + g(v, w)u
pr = dpAp + kivw — (k—1 + k2)p

Tsujikawa-Mimura model:

u = dyAu =V - (uVx(p)) + f(u)
pt = d,Ap —cp+ du

are not provided with the Lyapunov function.



Model (A) or (B) equations describe thermally
closed systems and are different from Prigogine’s
entropy, inner energy, and material density bal-
ance equation describing the dissipative struc-
ture:

anU

8875 s+ o
Co:
8_;:_V'Ji+yi<]ch
0

ot
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T. Yamaguchi et. al. (2004)

>

Life

Self-Organization

Complex Hierarchy

Sett-Assembly 2 < Dissipative Strucgture 2
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T Open System



The above described physically recursive structure sustains the informatic
organization and the complex evolution of life.

inheritance evolution

\\ elfness\

self-organization by information

| |

non-equilibrium recursive structure

sunlight /v \’

H. Tanaka, Life and Complex Systems, Baifukan, Tokyo, 2002.

cold cosmos



Summary: self-assembly induced by chemo-
taxis

1. Formation of collapse with quantized mass
IS suggested by the mean field hiearchy.

2. It is a localization of the blowup threshold,
while the proof is done by the blowup anal-
ysSis using self-similarity and the parabolic
envelope derived from the weak formula-
tion.

3. Here, an important factor of self-assembly,
the free energy transmission (emergence)
is observed as a consequence of the col-
lapse mass quantization.



IV Numerical simulations

1. simplified system of chemotaxis (N. Saito)

2. Chaplain-Anderson’s avascular tumour model (K. Hayashi)

ng =V - (d,Vn —~ynVc)

ft =dsAf +an — Bf
ct = —nfc in 2 x (0,7)
on on of

dna—fy%:dfaz() on 02 x (0,T),

where n, f, and c are the tumour cell density, the MDE (matrix degrad-
ing), and ECM (extra cell matrix), respectively.
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