Title:
The Neumann eigenvalue problem for the Hermite equation
Abstract:
We will show sharp upper and lower bounds for $\mu_{1}(\Omega)$, the first nontrivial eigenvalue of the problem

$$
\begin{cases}-\Delta u+x \cdot \nabla u=\mu u & \text { in } \\ \quad \Omega \\ \frac{\partial u}{\partial \nu}=0 & \text { on } \quad \partial \Omega\end{cases}
$$

where Ω is a smooth and possibly unbounded domain of \mathbb{R}^{n} and ν stands for the outward normal to $\partial \Omega$.
We firstly prove that among all sets of \mathbb{R}^{n} symmetric about the origin, having prescribed Gaussian measure, $\mu_{1}(\Omega)$ is maximum if and only if Ω is the euclidean ball centered at the origin.

On the other hand we will show that $\mu_{1}(\Omega) \geq 1$, for any convex domain Ω. Note that the last inequality, that clearly does not depend on the measure of Ω, reduces to an equality if Ω is any n-dimensional strip.

References

[1] B. Brandolini -F. Chiacchio - C. Trombetti, A sharp lower bound for some Neumann eigenvalues of the Hermite operator, preprint (2012), arXiv:1209.6275.
[2] B. Brandolini - F. Chiacchio - A. Henrot - C. Trombetti, An optimal Poincaré-Wirtinger inequality in Gauss space, preprint (2012), arXiv:1209.6469.
[3] F. Chiacchio - G. Di Blasio, Isoperimetric estimates for the first Neumann eigenvalue of Hermite differential equations, Ann. Inst. H. Poincaré Anal. Non Linéaire. Volume 29, Issue 2, 199-216, (2012).

