Title:

The Neumann eigenvalue problem for the Hermite equation

Abstract:

We will show sharp upper and lower bounds for $\mu_1(\Omega)$, the first nontrivial eigenvalue of the problem

$$\begin{cases} -\Delta u + x \cdot \nabla u = \mu u & \text{in} \quad \Omega \\ \frac{\partial u}{\partial \nu} = 0 & \text{on} \quad \partial \Omega \end{cases}$$

where Ω is a smooth and possibly unbounded domain of \mathbb{R}^n and ν stands for the outward normal to $\partial\Omega$.

We firstly prove that among all sets of \mathbb{R}^n symmetric about the origin, having prescribed Gaussian measure, $\mu_1(\Omega)$ is maximum if and only if Ω is the euclidean ball centered at the origin.

On the other hand we will show that $\mu_1(\Omega) \ge 1$, for any convex domain Ω . Note that the last inequality, that clearly does not depend on the measure of Ω , reduces to an equality if Ω is any n-dimensional strip.

References

- B. Brandolini -F. Chiacchio C. Trombetti, A sharp lower bound for some Neumann eigenvalues of the Hermite operator, preprint (2012), arXiv:1209.6275.
- [2] B. Brandolini F. Chiacchio A. Henrot C. Trombetti, An optimal Poincaré-Wirtinger inequality in Gauss space, preprint (2012), arXiv:1209.6469.
- [3] F. Chiacchio G. Di Blasio, Isoperimetric estimates for the first Neumann eigenvalue of Hermite differential equations, Ann. Inst. H. Poincaré Anal. Non Linéaire. Volume 29, Issue 2, 199-216, (2012).