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Mathematical analysis for differential equations
- Paradigm of Poincare-Hadamard

1. Fundamental theorem...well-posedness;
existence, uniqueness, continuous dependence of the solution

2. Qualitative study



If Ais a square matrix, then the well-posedness
of Az = b iIs summarized as detA = 0O,

so that uniqueness of x (for each b), existence
of = (for each b), and continuous dependence
of x (w.r.t. b) are equivalent.



Infinite dimensional versionisvalidif A =71+ K
with compact K, which covers most standard
linear pde’s.

...Fredholm, Banach-Steinhaus, Riesz-Schauder,...



List of standard linear pde’s

Schrodinger
(dispersive) \
/ wr — Av = f
: Elliptic
Hyperbol
yperboie (static)

(conservative)

Utt_AU:f / —A?}:f
\ Parabolic

(dissipative)

vt—szf



Weak solution is already necessary to guaran-
tee the well-posedness of the equation, for ex-
ample,

Vit = Ve <  v(z,t) = f(z+t)+g(x—1t)



Importance of the notion of well-posedness is
the looking of the total set of the solution.



2
Spectrum of the harmonic oscillator —Cgc—z—l—xz
is quantized as {2n+1|n=0,1,---}.




In nonlinear problems, those three notions -

existence, unigqueness, continuous dependence,
are not equivalent.

Uniqueness is the most difficult!



Linear — Semi-linear — Quasi-linear — Fully Nonlinear

Single — System



Standard methods in the theory of nonlinear
pde:

1. Method of Perturbation

2. Method of Energy / Variation

3. Method of Dynamical System
4. Method of Exact Solution

5. Method of Comparison



List of weak solutions valid to nonlinear problems
1. Schwartz

2. Lax-Kato

3. Minty-Browder

4. Nonlinear Semigroup
5. Viscosity

6. Renormalization

7. Varifold



Breaking down of the generation of weak solutions

1. flight




2. Concentration 3. Oscillation




Method of weak convergence in the theory of nonlinear partial
differential eguations controlsthose phenomena and getsthe
solution by excluding weak converging approximate solutions

which are strongly non-compact.



Chandrasekhar’s critical mass in steller astron-
omy (Yamabe problem in geomerty):

—Av=v5, v>0 In
v=0 on 012,

where ©Q c R3 is a bounded domain.

1. If €2 is star-shaped, then there is no solu-
tion (Pokhozaev 1965).

2. If €2 has a hole, then there is a solution
(Bahri 1988).



Scaling invariance:
—Av =P = —Avy, = v,

where vy (x) = A2/ (=L 2\z).



Genera blowup mechanism for v, = L(D?u, Du,u, x,t)
1. Blowup... T . <o
2. Rigidness-Threshold... U, IKC. =T =oo,|| Y, PC =T <o

3. Bubble — Quantization




Mean field equation of self-gravitating particles
...movements of nebula, cellular slime molds,...

u =V-(Vu-uvv)

Qx(0,T)
O=Av—-av+u

ou/ov=ovl/ov=0 o0Q x (0,T)

QO R? bounded 0Q smooth

a>0 constant



v = u(x,t) denotes the mass distribution of
many self-gravitating particles, and v = v(xz, t)
IS the field created by .



uo(z) 20 = wu(z,t) >0

(8u 87})
= — —u—1 =0
O \Ov ov

[u(t)]l1 = lluolly = A

total mass conservation



d

—W:—/ vV(logu — v)|?
g Qu\ (logu —v)|* <

decrease of the free energy

1
W = /Q u(logu — 1) — 5 (IIVUH% +a ||’U||%)



Quantized blowup mechanism

1. Formation of collapses

T <400

max

u(x,t)dx D m(x,)S, (dx)+ f(x)dx

XpE€S

0< f eLl(Q)mc(ﬁ\s)

t=>T

2. massquantization ~ M(X,) =M (X,)

81 X, € Q

M (%) = dr X, €0C2



S={x, eQ|Ix, > %,3t, TT

max ?

u(x,,t, ) — +x}
...the blowup set.

Ju(®) [L=[lu, [L= 4
= 2#(Q N S) + #0Q N S) <||u, ||, /(47)

The number of collapses is estimated from above by the total mass.
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Global existence by the free energy Blowup by the second moment

‘ Space localization

v

Time Formation of collapses  Blowup of the weak solution

discretization / | l l

_ Backward self-ssimlar L
Concentration lemma__ o<t ormation Mass quantization and
l/ emergence of type (1)

blowup point

Hyper-parabolicity of . Generation of the/
type (11) blowup point ~ weak solution / }
Forward self-similar

A ™ Reverse second moment

Parabolic envelope transformation
vanishing of residual term

separation and convergence to the origin of sub-collapses



S.
Free Energy and Self-Interacting Particles
/A Mathematical Approach

Birkhauser (2004)



ODE Newton Langevin

Kinetic Jeans-Vlasov Fokker-Planck
Conservation Euler Keller-Segel
of Mass

Equilibrium  Semilinear dliptic Semilinear elliptic
eigenvalueproblem  egenvaueproblem
(non-linearity unknown) (€xponential non-linearity)

Clustered  Hamiltonian flow Gradient flow
Particles
Physics Conservation laws Free energy

Mathematics Chaotic motion Quantized blow-up mechanism



Theory of nonlinear quantum mechanics

1. Each equilibrium state is formulated as a
nonlinear eigenvalue problem with non-local
term, where eigenvalue is associated with
conservative quantities.

2. Total set of equilibrium states obeys the
profile of the quantized blowup mechanism.

3. This fact induces the same phenomenon to
the non-equilibrium state.



Equilibrium state of the system of chemotaxis:

e’U

—Av+av =\ in <2
Jo v

Ov

— =0 on 092,

oV

where A = |Jug]|;.



Blowup mechanism in nonlinear e.v.p Non-equilibrium

y Statistical mechanics

Condensate.super—conauctivity. : Nonlinear quantum
Gauge theory " mechanics




Theory of dual variation

1. The equilibrium state is formulated in terms
of particles and field independently. Each
of them has its own variational structure.

2. They accept Legendre transformation, take
unfolding by Lagrange function, and are
dynamically equivalent.



Full-system of chemotaxis:

ur =V - (Vu — uVo) .

oy = A+ u } in Q2 x(0,7)
ou _ , v _

v Ouav—o} on 99 x (0.1).

Vv =

has the Lyapunov function

W(u,v) = /Q u(logu — 1) + % |IVvl|s — (v, u) :



d
“W(u0) + 7ol + [ ulV(ogu —v)? = 0.

In the equilibrium state, we have

A ()
v=(=Ap) tu and wu= c
Jo e’

and it holds that

logu — (—Ap)~tu =constant and |jul|; =
e’

Jo e

—Av = with ’U|aQ = 0.



Those problems are formulated as the varia-
tional problems

0F(u) =0 on Jlull{ =X
0Jx\(v) =0,

where

1

F(u) :/Qu(logu— 1)—§foXQG(x,a:')u®u

1
Ta(v) = 5 |Vo[|5 — Xlog (fQ e”) + Xlog X\ — \.



Those variational structures are transformed
to each other by the Legendre transformation,

and the Lagrange function
W = W(u,v)
takes the role of unfolding; more precisely,

Wh=(ap)y-1u =7

W|u: Ae¥ — j)\'
Ja€
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Mean Field Theories and Dual Variation



Self-dual Gauge theory
...super-conductivity,
condensate

Statistical mechanics

...turbulence,
transportation,
self-gravitating particles

Mean field theories

...phase separation,
phase transition,
pattern formation,
self-organization

Mathematical Biology

...chemotaxis,
morphogenesis
angiogenesis,
pulse interaction

S

Physical principle
...Mmass conservation
free energy

|

Mathematical principle
...nonlinear quantum mechanics
quantized blowup mechanism

dual variation

A

|

System biology
...backward causality
non-equilibrium
emergence
hyper-circle
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