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Point vortex mean field theories 
multi-intensities and kinetic model   

Takashi Suzuki 

Hamiltonian → statistical mechanics (Gibbs)

micro-canonical statistics

H total energy

equal a priori probabilities 

micro-canonical ensemble

canonical statistics 

canonical ensemble

inverse temperature

N→∞ … mean field limit

equivalent in 
heat equilibrium

micro-canonical measure

canonical (Gibbs) 
measure

weight-factor

A. Static Theory ~ what should it be?

thermo-dynamical 
relation 
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2D Euler equation of motion
on simply-connected domain

point vortex Hamiltonian → ＧｉｂｂｓＧｉｂｂｓＧｉｂｂｓＧｉｂｂｓ ｍｅａｓｕｒｅｍｅａｓｕｒｅｍｅａｓｕｒｅｍｅａｓｕｒｅ

high energy limit

point vortex mean field equation

Joyce-Montgomery 73 

Onsager 49 

ordered structure in negative inverse 
temperature  

point vortex mean field equation
（stream function formulation)

Rigorous derivation A formal derivation

k-point pdf 

mean filed limit

propagation of 
chaos 
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quantized blowup mechanism 

recursive hierarchy

B. Impact of the EllipticTheory
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Liouville-Gel’fand eqation

1. multi-intensity

mean field of vortices with deterministic  
multi-intensities (Sawada-S. 08, Onsager’s 
note)  

(Neri 04) 

C. Other Models
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1. optimal 

2. extremal case in progress

bounded if 

blowup analysis (Ohtsuka-Ricciardi-S.10) 

residual vanishing (Ricciardi-Takahashi-S.)

Trudinger-Moser inequality (Ricciardi-S.)   

broken path model continuous path model 

2. vortex filaments mean field equations 

Sawada-S. 
/ formal derivation  
/ variational structure
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Hamilton system → particle collision 
→ time irreversible kinetics

D. Kinetic Theory (Boltzmann) ～ where is it going? 

isolated

closed 

open 

entropy

Helmholtz free energy

Gibbs free energy 

energy 

temperature

pressure

micro-canonical

canonical

grand-canonical

thermodynamics

statistical mechanics

bottom up top down

system consistency kinetics ensemble

All ensembles equivalent in the range of 
short interaction (the state which the 
system takes ultimately in the sense of 
Gibbs)

moving clustered cells aggregating cells

variational structure of a chemotaxis model in 
the context of thermodynamics

2D Smolchowski-Poisson
equation 
(Childress-Percus, 
Jager-Luckhaus model) 

quanitzed blowup mechanism 
in the kinetic level 

Blowup of the solution
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variational structure

model (B) equation

total mass conservation

free energy decrease

Helmholtz’s free energy

particle density 

field 

mean field description 
of self-interaction

duality

control of stationary states

Senba-S. 00

stationary quantization → kinetic quantization
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2. quantized blowup mechanics

1. recursive hierarchy

3. field-particle duality 4. nonlinear spectral dynamics

point vortex mean field equation  
Smoluchowski-Poisson equation

static theory 

kinetic theory 

Kinetic Mean Field Theories
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Smoluchowski-Poisson equation

Kyoto  2011. 8. 28-31

1. vortex terms

2. hetero-separative
homo-aggregative 
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classical analysis 
1. Nagai-Senba-Yoshida 97, Biler 98, Gajewski-Zacharias 98 global-in-time existence 
2. Biler-Hilhorst-Nadieja 94, Nagai 95, Nagai 01, Senba-S. 02 blowup in finite time 

1. Senba-S. 01 weak formulation 
monotonicity formula 

formation of collapse 

4. S. 05 backward self-similar transformation
scaling limit 
parabolic envelope (1)
scaling invariance of the scaling limit

6. S. 08 scaling back 

2. Senba-S. 02 weak solution 

5. Senba 07 
Naito-S. 08

parabolic envelope (2)

7. Senba-S. 11 translation limit 

instant blowup for over mass 
collapse initial data

collapse mass quantization

type II blowup rate
formation of sub-collapse 

8. Espejo-Stevens-S. 12 simultaneous blowup 
mass separation 

quantization without blowup  
threshold

Mathematical Structure of the Smoluchowski-Poisson equation 

3. Kurokiba-Ogawa 03 scaling invariance non-existence of over mass 
entire solution without 
concentration

limiting process simplification

DD model 
(hetero-separative, 
homo-aggregative type)

Kurokiba-Ogawa 03 
Espejo-Stevens-Velazquez 10 

competitive system of chemotaxis
(hetero-homo-aggregative type) 

Espejo-Stevens-Velazquez 09 
Espejo-Stevens-S. 12

chemotaxis

diffusion

diffusion

chemtaxis

macrophage

cancer cell 

chemicalproduction

chemotaxis

chemotaxishetero-homo-aggregation type 

chemotaxis

collapse mass separation 

simultaneous blowup

J. Joyce, and 
J. Pollard. 
Nat Rev 
Cancer 9: 
239-252 (2009)
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(radial case)

- DD model Typical Results 
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Technical Difficulties 

1. vortex terms 
2. Dirichlet bounday condtion for the Poisson part 
3. two-species

main obstruction

Formation of collapseCollapse mass quantization

A1
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method of the weak scaling limit 

A2

5. scaling back 7. scaling argument  applied to the weak 
solution

-1

0

c(s)

s

A3
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Summary

1. In Onsager’s static theory of point vortices we have recursive hierarchy, quantized blowup 
mechanism, field-particle duality, and nonlinear spectral mechanics  

2. Kinetic theory of Chavanis induces  Euler-Smoluchowski-Poisson equations as a mean 
field limit

3. Its two-species model without vortex terms is a drift-diffusion system with hetero-
separative-homo-aggregative gradients 

4. If the Poisson part is provided with the Neumann boundary condition, we have a complete 
classical analysis; existence and non-existence of the solution global-in-time.  Then the 
blowup analysis guarantees the standard results; formation of collapse, mass quantization, 
mass separation, formation of sub-collapse, and type II blowup rate  

5. Three factors - vortex term, Dirichlet boundary condition, and two species - are main 
technical difficulties in the Euler-Smoluchowski-Poisson equation.  Except for the global-in-
time criterion so far the results are restricted 

6. Yet  all the blowup analysis is done for the DD model concerning aggregative single 
species, excluding boundary blowup points
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