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o(z) = |z|?, 95X

=

d ) A2
< L) =4N—
ai |, 1ot o

Kurokiba-Ogawa 03
BER2RE—AVN+RIT—1 T
ug € L'(R?)

1) %5 B CFREIZE
y= (- 0)/(T )
s=—log(T—1t),t<T
+ ODE /&% L — h

=

2(y,s) = (T — t)u(z,t)

2=V (V2= 2V(T* 2+ [y[*/4))
z=2(y,8) >0

(y,5) € R* x (—log T, 4+00)
12C8)ll = A

12/15

2) "p € C§(R?)

d
d—/ Z(y,s)w(y)dy‘ <Cy
S R2

2(y,8) 2 0, [lz(s)[lL = A

4

(y = o0 BRI LT X 4 — L B3R
sk = +00, H{sj.} C {sn}

2(y, s + s},)dy — 3¢(dy, s)
C. (=00, +00; Mo(R?))

Mo(R?) = Co(R?)
Co(R?)
={f € C(R? U {oo}) | f(c0) =0}

Vs € (—00, +0)
¢(dy, s) AR Radon Il

(s =V - (VC= V(T %+ [y*/4))
in R? x (—oo0, +00) DF5fE

3) BWMEO0<R<I1

d
0 o O

=

< C’,\R_2

m(xg) = Q(Rz,s), —00 < § < 400
TV Rr—)« 2T P RAEE
= A — VIRIRIR A B

. T) = 3 m(@o)ds, + f

ToES

t="T

B .. ERICIEY VI BIR
13/15
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4) A7—ILBIERL
C(dy,s) = e™"A(dy’, s')
Yy =e 2y, 8 = —e®
=

A, =V (VA— AVT « A)

A(R2,5) = m(zo)

5) AT B HHRIR

Yo e C3(R*) DR

d

A= A(dy,s) >0, (y,5) € R* x (—00,0)

=

Vs T 400, 3{s}} C {sx}
A(dy, s — s1,) = a(dy, s)
in O, (—o0, +00; M(R?))

as =V -(Va—aVI xa)

a(dy, s) >0, (y,s) € R? x (—00, +00)

a(R?,5) = m(zo)

M(R?) = [Co(R?) @ R] ZHWNT

R — VA R a0

14/15

6) RAT2KE—A L |

0<d(s)<1,5>0
—1<¢(s)<0,s>0
[ s—=1, 0<s<1/4
5)=1 o, s>4
c(s)

m(zo) > 87 = >0
(c(ly]?) +1,a(dy,0)) > n

FER~DEF+2EEBEF
BRI K FER A

7) A — VRGN

a(y, ) = au(y, s) = p’a(uy, p?s)

(c(lyl?) + 1,a"(dy,0)) = n, " > 0

=

(e(u2|yl*) +1,a(dy,0)) > 7

0<e(u?yP)+1<1

Yy e R, c(u2ly[?) +1 =0, p 1 400

= (BIUREER)

0>, FIE ST P DR

Voo € S, m(xg) = 87

M('7T> = Z m(l‘o)(;mo +f

Lo€S

15/15
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f#HE
1. ®@EL—
pre-scaled

u(z, t)de — Z 870z, (dz) + f(x)dx

20€S
0< f=f(z) € L'R*)NC(R*\S)
(1) collapse DJERL
(2) HEETL
re-scaled
2(y,s) = (T — t)u(z,t)
y=(z—x0)/(T —1)'/?
s=log(T —t),zp €S
2(y, s + s')dy — 8mdy(dy)
C.(—00,+00; Mo(R?))
s’ 1 +oo
(1) sub-collapse Dk
(2) type II DR L — b

E 3 [Senba 07, Naito-S. 08]
Voo € S type 11
ltiTI’;l(T = ) [[ul Dl oo (B(ao p(T—1)1/2))

=400, "b>0

ERERBIIERYAIHLADLND

t=T
[N

B - ER/NOBYER

2. IRILX—DEFIE

Landau-Ginzburg E7 /L (E & B 2K 5T)
H-sysytem
Yamabe [ (E& 5 SoboleviE#)

e NERZTUDHIE(ERE -FEEE)

RIBEH/IR (EEB2RT)

1 IBREEBEODETFILE
1.1. EE (SP)
1.2. TRILF— (HH)

2. Lyapunov B0 & R 4%

2.1. BISEH(SP)

22. IRILF—HEEDIFAM (HH)

3. EEfE%profile LT 5EHCHELUMNER

4. sub-collapse £ & Type Il DIRFEL—F
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IERTNDEEEFIE

v
—Av = )\ev in Q, v =0 on 02
Joe
w:v—i—logx\—log/e”
Q
=

—~Aw=e"inQ,w=EKond)

/ew:)\
Q

Q CR", n >3 A IR, 00 #5HH
1<g< 22

—Aw =w? in Q, w=EH on N

/wi:/\
Q

n
A=y - BHRIEHR 9= ——
n—2

HESEFLEREHE-B)

MEBNE R
TSXVEHBERME ~ EREECEARE
(Toland W 3t)

Chavanis QhA 2Tk
(Tsallis T rAE—)

1
ut:m—Aum—V~(uVF*u)
m

in R" x (0,7T)

m=2-—2
n

1R FEERE
Type Il )@ % R DO FRE (R. Takahashi-S.)

4 BRTBRES

2. (KocilgE)

QARBFEES, T >0

1. (RFIZAE)
E¥ [R. Takahashi-S.]
QCR", n >3, MK, 0Q W50

{(g0®)} ROF, 1 <y < Zf;

—Av =v] inQ, v=constant on Q

u=u(z,t): Qx[0,T] = (—o0,+o0] Hif
D(t) = {z € Q| u(z,t) = +oo}
D= [J D(t)x{t} cQx0,T]

0<t<T

u —Au>0,D'(Qx (0,7)\ D)
u = u(z,t) Lip. ##¢ near in 0Q, t € [0,T] —Fk

n(y=1) F. Takahashi-S. 08b
/U+2 :)\,/\k—>)\020 EE[ afaiasit ]
Q T L"(Q)
= n>2= /0 Cap,(D(t))dt < )
3 8535

1. Hkam =0(1)

2. supg v* — —oc0

3. No = m. REMER, F2* € Q
VR(z,) =0, Yz, v* Ok

T = T, VP (2p) = 400

vk = —oo, BFT—# in Q\ {z.}

n(y=1)

vR(2), 7 dr — mdy,(dr) in M(Q)

R QCR", n>3, HROGEER

f=
{(uk,)\k)}, ﬁgy)ﬁj
—Au = f(u,\) inQ, u=0 on N

flu,A) >0, @i in (u, A)

/ Pl M)z < O, [luglloe = 450, A — Ao
Q
S: BRES = Capy(S) =0, du(S) <n—2
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Stochastic Intensity

5. RUBELR

Deterministic Intensity

Intensities of the vortices: independent random Intensities of the vortices: deterministic subject

variables a € [—1, 1] subject to the the same
distribution P(da) (one species) =

f[71 I ae™ Y P(da)
p = : —Q, p ’
f[—l,l] (Jo e#¥) P(da)

neutral case =

v =
_AU = A < e‘U ° —v
Joer + [qe

....method of the minimal free energy, Neri 04

¢ =(=Ap)~'p

v

)inQ,v:OonBQ

to the distribution P(da) (many species) =
aeav

[—1,1] fQ

formal proof, Sawada-S. 08

—Av =\

P(da) in ©Q, v =0 on 092

eav

neutral case =

e e "
—Av =\ (— -
Joe'  Jge™

Joyce-Montgomery 73, Pointin-Lundgren 76

> in Q, v =0 on 99

Q: compact Riemannian surface

—AU:Le:)inQ,/UZO
Jo(e? +e7)dx Q

Q: compact Riemannian surface
v

e e v
A=A —+— — —— inQ,/v:O
(erv er_v> Q

EH# [Jost-Wang-Ye-Zhou]

{(Ak,vk)}: non-compact solution sequence
z € Q: blowup point
/\keivk

m(xo): concentration mass of —————
Vi
fQ etvrdr

=
ma(zg) € 8tN. ...use of quaternions

c.f. Nagasaki-S: complex analysis

F#8 [Ohtsuka-S. 06]
my(zg) =4nl(l £1),0=1,2,...

not exclusively
EH [Esposito-Wei]

3 (my (20), m_ (o)) = (8, 247)
for the Neumann problem on the disc

6. MAE 5 &

HFHR I T TV
Halperin-Hohenberg-Ma 74
Hohenberg-Halperin 77

F: HHTRLF—

model (A) Tu; = —0F (u)

model (B) ruy =V - (MVF(u))

A~V AHRVY BT R LF—
F=U-TS

T T

<+ IEYELER

STy hrpE—

U PNEBT R F—

Smoluchowski-Poisson A&z ...

BV~ hab—

HCEAMAEEH

= ANLLRILYBEHIRIILT—

F(u) :/ u(logu — 1) — 1 (T % u,u)
R?2 2

— model (B) AR

ug =V - (uVIF(u))

=

d
Sl =0
(&H BIRAF)

d
GF) == [ uviFwP <o
(4 XL F— (R 17)
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Full-System of Chemotaxis
ur =V - (Vu — uVv) Lyapunov B8%&

1 .
TU = Av +u — —/ uin Q x (0,7) L(u,v) = [ u(logu —1) +1||Vfu||§
|Q| Q Q 2

ou ov  Ov
a—ua_a_Oonan(O,T) —<U’u>7 UZO;/Q’U:O

/U:O
Q

d Model (B) - Model (A) A=
L (el = 0

t ug =V - (uVLy(u,v))

dL =—L in Q T

S (u(t), o(0)) + 73 T = heln i @ 0.1)

U=—Ly, (u,v) =0 on 99 x (0,7)
= —/ u|V(logu — v)[? < 0 v
R2
Toland I ZE &
F,G: X — (—o00,+00], prop. c¢’x Ls.c. L(z,p) = F*(p) + G(z) — (z,p)
J(z) = G(z) — F(z) inf L(z,p) = inf J*(p)
() = F*(p) = G"(v) e e
= inf J(z)
reX
LagrangeBd%k

[full system]

unfolding (#E#)
v = (—AJL)_IU

unfolding (#E#)
Ae?

~Joe

L(u,v) = /Qu(logu -1)

1
+3 Vol — (v, )

uZO,/u:)\, /UZO
Q Q

u

BEIRILE— B0 A E
1
F(w) = | ultogu—1) Ta(v) = 51 Vvl3
Q
—% ((=Ayr)tu,u)  [SPAHEER] [SimFEys]  —Alog /Q e’ + A(log A — 1)
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(#) Toland 3t

#H¥5%5 ... Fix-Caginalp, Penrose-Fife
85 B ... Coupled Cahn-Hilliard
SCIERZIK ... Pawlow-Zochowski

FK ... Euler-Poisson

Kuhn-Tucker Xt
(FE@BE % E. Yanagida)

Gierer-Meinhardt (5¢4)

Fitz-Hu-Nagumo (###%)

7. EEEIREEDNIILE=T U Hl1E
(LGHTEz)

HEIREFREIEFE (2D-SPAE)
BIREOHER ... RER

1. BIRHIPE B

2. EFLT DIRF I

duality

- EEHRE - FRLTIO—F | i

3. G EHIF DR

o e TS

Mean Field Theories
and Dual Variation
Atlantis Press
Amsterdam 2008
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FEH 6 (HERTLOEN)

1.

-

BT ARSI 2D Smoluchowski-Poisson FFFEZNO A [RIRE RIS R
W2t L CRRAL

BB IE G T HR. REERE, BT R —0RD, 55/
A= )VAREMED S Bl TR T & B VB R38R

e-IERIME & BEFRADN G collapse DIEAK & B & D T 05 OFFAT

BEO LD OFHEIXR 7 —ILEEER & Bha

H T 3L X —HEITAEHE TRV SAREIC L = e B — LBk
MBEE & 72V sub-collapse DK,

R — WAIENE & DO 31 208 L C, B, AL, AW, Blpin &
D% < ORI L B
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