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Abstract

Various loss functions are employed in literature to evaluate competing volatility fore-

casting models. The loss function for an evaluation requires true volatility, which is unob-

servable. Patton (2011) provides a new class of loss functions that guarantees the consistency

of the ranking (asymptotically) when the unbiased volatility proxy is used instead of true

volatility. However, while realized variance (RV) is commonly used as the proxy in practice,

it is natural to consider that RV does not satisfy the unbiasedness condition due to market

microstructure noise.

In this paper, we show that such bias in the volatility proxy can cause misspecified

rankings of competing models. We also introduce a new notion for the robustness of loss

functions to incorporate the effect of the biased volatility proxy and propose a proper method

to evaluate the competing forecasting models if the volatility proxy is biased. We conduct

a series of Monte Carlo simulation to access the performance of our method and confirm

that the proposed method behaves well.

keywords: forecasting evaluation, loss function, realized variance, volatility.



1 Introduction

Since volatility (conditional variance of return distribution) plays a crucial role in financial

research and practice, a number of studies have been conducted that aim to forecast future

volatility accurately. However, the evaluation of the accuracy of these comparative fore-

casting models is not easy, because true volatility is unobserved and even ex-post. That is,

it is common practice to evaluate the performance of forecasting using a loss function and

substituting the volatility proxy for it. Traditionally, squared return is employed as a proxy

for true volatility.

Various loss functions are proposed in previous studies to evaluate the performances of

forecasting. The problem is that these loss functions sometimes provide different results for

ranking volatility forecasts in empirical research. Therefore, one would want to select the

better loss function from these proposed loss functions in some criteria.

To provide a solution to this question, Hansen and Lunde (2006a) who explicitly consider

the error of proxy show the sufficient conditions for loss functions that give a consistent

ranking of volatility forecasting even proxy is imperfect (has error). They also show mean

squared error (MSE) is robust in that sense. Patton (2011) shows the class of robust

loss function and it includes major loss functions, MSE and quasi likelifood (QLIKE).

Therefore, one can employ MSE or QLIKE to compare the accuracy of the forecasting

candidates, and the consistency of ranking them is approved when all their assumptions are

satisfied. Furthermore, considering the simulation results of Patton and Sheppard (2009)

that compare the power of the test proposed by Diebold and Mariano (1995) and West

(1996) (DMW test), QLIKE is the best loss function for volatility forecasting comparison.

However, we should carefully review and verify the relation of their assumptions to a

real situation. Recently, realized variance (RV) is employed as a volatility proxy due to it

greater efficiency than squared daily returns. While RV is commonly used as the proxy in

practice, it is natural to consider that RV does not satisfy the unbiasedness condition due to

market microstructure noise. The treatment of market microstructure noise is discussed in

econometric literature, such as Bandi and Rusell (2008) and Barndorff-Nielsen et al. (2008).

We give a brief explanation for market microstructure noise and its effect on RV estimation

in the latter section.

We should note that the results of Hansen and Lunde (2006a) and Patton (2011) are

derived with the assumption that volatility proxy is unbiased. Therefore, it is important

to know whether robustness of the loss functions holds when biased volatility proxy is

employed.

Here, we consider consistency for ranking volatility forecasting when the volatility proxy

is biased. First, we reconsider the result in Hansen and Lunde (2006a) by relaxing their

condition, which is the unbiasedness of the volatility proxy. As a result of this reconsidera-

tion, we introduce a new notion of robustness to take on the effect of the bias of volatility

proxy on the robustness of the loss function. We show that using our method, one can

evaluate the robustness of loss function when volatility proxy is biased. The feature of our
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method is that it is free from estimation of the bias of proxy, and this property is useful in

practice.

We conduct a simulation to evaluate the effect of biased volatility proxy on the robust-

ness of loss functions. First, we assume the bias direction is upward, and it is a natural

and acceptable assumption with respect to the empirical results in the literature. we also

consider the situation that the sign of the bias is unknown. We employ major robust loss

functions, and compute the accuracy of their ranking when the volatility proxy is biased. We

also report the performance using our method of choosing loss function with consideration

for robustness of bias.

The remainder of this paper is organized as follows. In Section 2, we introduce our

theoretical framework and show the main results. We analyze a simulation to assess our

theoretical results in Section 3. Finally, we conclude the paper in section 4.

2 Robust loss function and realized variance

First, we establish notation. Let rt be a financial asset return at time t, usually daily or

monthly. Ft−1 is the information set at time t−1, which includes a higher frequency than rt.

We assume E[rt | Ft−1] = 0, thus the variable of interest σ2
t = V [rt | Ft−1] = E[r2

t | Ft−1].

The loss function for forecasting evaluation is L : R+ × H → R+ where R+ denotes a

nonnegative part of the real line. The first argument of L is σ2
t or its proxy σ̂2

t and the

second is ht which is a forecast of σ2
t . H is compact subset of R++, which denotes a positive

part of the real line.

We consider the situation where one wants to rank comparative forecasting from models

A and B in terms of the accuracy of forecasting. The key difference between volatility fore-

casting and other forecasts is that true volatility is not observable even ex-post. Therefore,

one must use volatility proxy σ̂2
t instead of true volatility for the forecast evaluation.

Andersen and Bollerslev (1998), Hansen and Lunde (2006a), and Patton (2011) focus

on volatility proxy as beeing imperfect and discuss the desirable properties of loss function

in such a situation. The following notion, ”robustness of loss function” is a key idea in

literature.

Recalling Patton (2011), we define the loss function L(σ2
t , ht) is robust, if the ranking of

the two volatility forecasts hA and hB using expected loss of L(σ2
t , ht) with true volatility

and with the proxy are the same. More precisely, loss function L(σ2
t , ht) is robust if L(σ2

t , ht)

is satisfied using the following relational explanation:

E[ L(σ2
t , ht,A) ] ≷ E[ L(σ2

t , ht,B) ] ⇔ E[ L(σ̂2
t , ht,A) ] ≷ E[ L(σ̂2

t , ht,B) ], (1)

for any s.t. E[σ̂2
t |Ft−1] = σ2

t .

Hansen and Lunde (2006a) show that the sufficient condition for a loss function to be

robust is that ∂2L(σ2,h)
∂(σ2)2

does not depend on h. Following Hansen and Lunde (2006a), Patton

(2011) derives necessary sufficient condition for robust loss function and provides a new
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class of loss functions that guarantee the consistency of the ranking (asymptotically) when

the unbiased volatility proxy is used instead of true volatility.

R(σ̂, h; b) =


1

(b+1)(b+2)
(σ̂2b+4 − hb+2) − 1

b+1
hb+1(σ̂2 − h) (b 6∈ {−1,−2})

σ̂2 log σ̂2

h
− (σ̂2 − h) (b = −1)

σ̂2

h
− log σ̂2

h
− 1 (b = −2)

(2)

where b is scalar parameter. R(σ̂, h; b) with b = −2 and b = 0 corresponding to QLIKE and

MSE, respectively.

It should be noted that the results of Patton (2011) and Hansen and Lunde (2006a)

were derived under the assumption that volatility proxy is unbiased. As explained in a later

section, it is possible for volatility proxy to be biased in practice. Therefore, it is important

to know the robustness of the loss function when biased volatility proxy is employed.

In the next subsection, while introducing the key idea of Bandi and Rusell (2008), we

discuss the possible existence of the RV bias the common volatility proxy in practice. We

also review the discussion of robustness of loss function with biased proxy assumption in

2.2.

2.1 Realized variance as a volatility proxy

Assume that the logarithmic price process p(t) is determined by

dp(t) = σ(t)dW (t), (3)

where σ(t) is the spot volatility process and W (t) is a standard Brownian motion. Following

the literature, we assume that σ(t) is cadlag, as in most major volatility models.

Then σ2
t is defined as follows:

σ2
t =

∫ t

t−1

σ2(s)ds.

We now consider the estimation of σ2
t from a discrete price set by (2), pt,1, pt,2, ..., pt,M

in [t − 1, t]. However, we can only obtain the data set p̃t,i that contaminated by market

microstructure noise.

p̃t,i = pt,i + ut,i, ut,i ∼ i.i.d.(0, ω2) for i = 1, ...,M, (4)

where ut,i is market microstructure noise and its mean and variance are 0 and ω2, respec-

tively.

Using observable price set p̃1, ..., p̃t,M , RV is defined as

RVt,M =
M∑
i=1

r̃2
t,i, (5)

where r̃t,i = p̃i,t − p̃i,t−1.
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As mentioned, RVt,M is an inconsistent estimator of σ2
t in the presence of market mi-

crostructure noise. More precisely, if M → ∞ RVt,M diverges to infinity. The conditional

expectation and variance with assuming the independence noise of price,

E[RVt,M |σt] = Mω2 + o(M),

V ar[RVt,M |σt] = 2IQt/M + o(1/M),

where IQt =
∫ t

t−1
σ4(s)ds. Using above result, Bandi and Rusell (2008) propose the op-

timal sampling frequency of RV in terms of MSE. Optimal number of observations M∗ is

determined as

M∗ ' (IQt/ω
4)1/3.

We can estimate RV effectively in terms of MSE, using above rule. However, it should be

noted that if we use it to determine the number of observations, RV estimates include not

only sampling errors but also upward bias.

After the study conducted by Bandi and Rusell (2008), more sophisticated estimators

were proposed for integrated volatility estimation such as those of Zhang et. al. (2005) and

Barndorff-Nielsen et al. (2008). However, optimal sampling RV (or sparse sampling RV) is

still common in practice, because of its simplicity.

2.2 The effect of biased volatility proxy

In this subsection, we reconsider the result of Hansen and Lunde (2006a). To be specific, we

relax the condition of unbiasedness of volatility proxy σ̂2
t . Here, we introduce the constant

bias q as E[σ̂2
t ] = σ2

t + q, where q ∈ R.

First, we recall Assumption 2 in Hansen and Lunde (2006a), making a small modification.

Assumption 1. An extension of Assumption 2 in Hansen and Lunde (2006a) σ2
t

and σ̂2
t denote two (possibly random) variables.

(i) Define ηt = σ̂2
t −σ2

t and {Ft} a filtration it holds that ht and θt are {Ft−1} measurable.

(ii) Either, (a) L′(σ2, h) = ∂L(σ2, h)/∂σ2 exists and does not depend on h; or (b) L′′(σ2, h) =

∂2L(σ2, h)/∂σ2∂σ2′ exists, and does not depend on h, and {ηt − q,Ft} is a martingale

difference sequence.

We only relax the condition of unbiasedness of volatility proxy σ̂2
t , then we can obtain

following proposition.

Proposition 1. Assumption 1 is satisfied. Then, the robustness indicator of Loss function
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L(θ,X) with two forecasts Ht = ht,A, ht,B is determined by ZL(Ht), where

ZL(Ht) =
E[ L(σ2

t , ht,A) ] − E[ L(σ2
t , ht,B) ]

E[ L(σ̂2
t , ht,A) ] − E[ L(σ̂2

t , ht,B) ]
= 1 − q wL(Ht),

wL(Ht) =
E[L′(σ2

t , ht,A) − L′(σ2
t , ht,B)]

E[L(σ̂2
t , ht,A)] − E[L(σ̂2

t , ht,B)]
.

If ZL(Ht) > 0, then L(σ̂2, h) is robust.

Proof of Proposition 1. The Proof is given in Appendix.

If ZL(Ht) = 1, that is, either q = 0 or q 6= 0 and wL(Ht) = 0, then obviously L(σ̂2, h)

is robust. Therefore, this proposition includes Theorem 2 in Hansen and Lunde (2006a) as

the q = 0 case.

We now focus on the q 6= 0 case. Then, L(σ̂2, h) presents an inverse ranking when

qwL(Ht) > 1. Thus, robustness of Loss function L does not hold when volatility proxy is

biased. As shown in Proposition 1, the sign of ZL(Ht) shows the robustness of L. we want

to know about ZL(Ht) using data Ht and σ̂2 for t = 1, ..., n. However, it is infeasible to

evaluate ZL(Ht) in a practical case, because of the numerator of ZL(Ht) includes σ2
t .

On the other hand, if the numerator of wL(Ht) does not include σ2
t , then, it is possible

to evaluate robustness of L via wL(Ht). Therefore, by calculating wL(Ht) for all candidate

loss functions, we can select a better loss function to the obtain correct ranking of models.

In next section, we demonstrate how to use our proposed indicator in practice.

Our indicator can be defined if Loss function satisfies assumption 1. That is, we can

define our indicator for robust loss functions proposed by Patton (2011).

Collorary 1. Empirical robustness of the robust loss function R(σ̂2, h; b) by comparing two

forecasts Ht = ht,A, ht,B, is determined by wR(b)(Ht) and is as follows;

wR(b)(Ht) =
s(Ht; b)

s(Ht; b)σ̂2
t + v(Ht; b)

,

where

s(Ht; b) =


hb+1

t,A − hb+1
t,B

log(ht,A/ht,B)

1/ht,A − 1/ht,B

and v(Ht; b) =


− b+1

b+2
(hb+2

t,A − hb+2
t,B ) (b 6∈ {−1,−2})

(ht,A − ht,B) (b = −1)

−(log(ht,A) − log(ht,B)), (b = −2).

3 Monte Carlo simulation

in this section, we conduct a Monte Carlo simulation. The purposes of the simulation are;

(1) to evaluate the effect of biased proxy on empirical ranking of volatility models; (2) to

evaluate the method for loss function selection using the proposed indicator. We generate

artificial data by following a standard GARCH(1,1) model, which is employed in Patton
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and Sheppard (2009),

rt = σtεt, t = 1, 2...T. (6)

σ2
t = µ + ασ2

t−1 + βr2
t−1. (7)

Following Patton and Sheppard (2009), we set the parameter values of (7) and (8) as

µ = 0.05 α = 0.85, β = 0.10 T = 1060.

We consider the situation of employing the RV as a volatility proxy. Following Patton

and Sheppard (2009) we allow the error for RV, and additionally allow the bias for RV.

First, we consider upward bias for RV with reference to Bandi and Rusell (2008). We also

consider the sign of the bias is unknown case in later of this section. Here, RV with M

samples are computed as follows.

RVt(M, q) = σ2
t

m∑
i=1

 γi∑
j=γ(i−1)+1

ξt−i

2

+ q (8)

where ξi ∼ i.i.d.N(0, 1/390) and γ = M/m . We calculate RV with M = 26, 78 and 390,

that corresponds to using fifteen minute, five minute, and one minute returns, respectively.

q is a bias of volatility proxy. We set q as 0. 0.1, 0.5 and 1.

In this simulation, the signal to noise ratio ξ2 := w2/IV is ξ2 = w2 because E[σ2
t ] = 1.

The relation of the parameters are as ξ2 = q/M . We employ RVt(M, q) as a proxy with

0.1 ≤ q ≤ 1 and 26 ≤ M ≤ 390. That is, it is equal to set 0.0002 ≤ ξ2 ≤ 0.038.

However, the range of ξ2 obtained by empirical analysis of U. S. stocks in Hansen and

Lunde (2006b) is 0.0002 ≤ ξ̂2 ≤ 0.006. Hence, we only report the simulation results with

the settings of ξ2 (determined by M and q) that fall above range.

Following Patton (2011), we employ (1) Rolling window and (2) Risk Metrics for volatil-

ity forecasting.

ht,RW =
1

60

60∑
i=1

r2
t−i (9)

ht,RM = λht−1,RM + (1 − λ)r2
t−1 (10)

where λ = 0.75.

Then, we compare the above two candidates using three loss functions. We calculate

the average loss by loss functions for three different choices of parameters b = −2,−1, 0.∗

Patton’s Robust loss function with b = −2 and b = 0 corresponds to QLIKE and MSE,

respectively. We set n = 100, 800 to calculate the average of loss function values.

Here, we propose a new method using the results from Section 2. Our propose methods

are as follows:

∗First we also calculate loss for b = 1, 2 cases. However, the performances of these settings are not good,
therefore, we skip its discussion.
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Case 1: With upper bias assumption

According to the discussion of Bandi and Rusell (2008), it is natural to assume that E[σ̂2
t ] =

σ2
t + q where q > 0. In this case, if wL(Ht) < 0, L(σ̂2, h) is robust. Now, we define

ŵR(i)(H) = 1
n

∑n
t=1 wR(i)(Ht). Then we choose loss function as follows:

Proposed method 1: (assuming upper bias)

1. Calculate ŵR(i)(H) for each sample.

2. If max(ŵR(i)(H); for i = −2,−1, 0) ≥ 0, we choose the loss function R(i) to rank

forecasting models, whose ŵR(i)(H) takes minimum value.

3. If max(ŵR(i)(H); for i = −2,−1, 0) < 0, we choose the loss function R(i) to rank

forecasting models, whose ŵR(i)(H) takes takes maximum value.

Case 2: Bias direction is unknown

Hansen and Lunde (2006b) show that RV estimates do not always diverge to the upper side

that in practice. As shown in Section 2, the explanation of Bandi and Rusell (2008) assume

that noise is i.i.d. Hansen and Lunde (2006b) show that the bias of RV has the possibility

to be negative if the noise is dependent.

If we consider the sign of q as unknown, it is better to choose the loss function whose

|ŵ| is the least. Then we choose loss function as follows:

Proposed method 2:　 the sign of bias is unknown

1. Calculate ŵR(i)(H) for i = −2,−1, and 0.

2. We choose the loss function R(i) to rank forecasting models, whose |ŵR(i)(H)| takes

minimum value.

Finally, we calculate the failure rate α for the above two loss functions and our proposed

method to evaluate the performance.

α :=
1

m

m∑
j=1

1(d(j)−d̂(j)<0) (11)

where d(j) = 1
n

∑n
t=1 L(σ

2(j)
t , h

(j)
t,A)−L(σ

2(j)
t , h

(j)
t,B), d̂(j) = 1

n

∑n
t=1 L(σ̂

2(j)
t , h

(j)
t,A)−L(σ̂

2(j)
t , h

(j)
t,B),

and m denote and the number of Monte Carlo replications. The sign of these quantities

show which forecast is better. Clearly, it takes 0 ≤ α ≤ 1. If loss function is robust, then

α = 0 because E[d(i) − d̂(i)] = 0. The results are summarized in Table 1.
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Table 1: Monte Carlo comparison of α for several loss functions for the GARCH(1,1) model
with upper biased proxy. The number of replications is 2,000.

RV (q,m) n = 100 n = 800
q M QL R(−1) MSE Prop1 Prop2 QL R(−1) MSE Prop1 Prop2
q = 0 390 0.4 0.3 0.1 0.1 0.0 0.0 0.1 0.0 0.0 0.0

72 0.6 0.8 0.4 0.2 0.0 0.0 0.3 0.0 0.0 0.0
39 1.1 1.2 0.5 0.2 0.0 0.0 0.6 0.0 0.0 0.0

q = 0.1 390 6.3 0.9 2.4 0.0 0.0 0.0 1.3 0.0 0.0 0.0
72 6.0 1.1 2.5 0.1 0.0 0.0 1.3 0.0 0.0 0.0
39 6.5 1.2 2.9 0.1 0.0 0.0 1.3 0.0 0.0 0.0

q = 0.5 390 36.2 4.1 20.6 0.0 0.0 10.6 7.4 0.0 0.0 0.0
72 36.4 4.4 20.2 0.0 0.0 10.8 7.2 0.0 0.0 0.0

q = 1.0 390 51.0 7.2 31.7 0.0 0.4 71.8 19.6 0.2 0.0 0.1

Bold entries indicate that the best result of five candidates. The rows corresponding to

q = 0 show the result without bias. The α’s are 0 in all loss functions (without R(−1)) when

the sample size is large (n = 800), thus it roughly meets the results in Patton (2011). The

rows with q 6= 0 report the results with biased proxy. Comparing to the unbiased case, the

values of α are higher, the bias of proxy affects the robustness of loss functions. Importantly,

we find that the α of QLIKE and R(−1) are relatively larger than MSE. We can observe

that our proposed methods 1 and 2 provide better or equivalent to other loss functions,

in terms of failure rate. That is, we can conclude that we can improve the performance

of ranking of competing models by choosing the better loss function using our proposed

method.

Table 2: Monte Carlo comparison of α of several loss functions for the GARCH(1,1) model
with biased proxy. The number of replications is 2,000.

RV (q,m) n = 100 n = 800
|q| M QL R(−1) MSE Prop1 Prop2 QL R(−1) MSE Prop1 Prop2
|q| = 0 390 0.4 0.3 0.1 0.1 0.0 0.0 0.1 0.0 0.0 0.0

72 0.6 0.8 0.4 0.2 0.0 0.0 0.3 0.0 0.0 0.0
39 1.1 1.2 0.5 0.2 0.0 0.0 0.6 0.0 0.0 0.0

|q| = 0.1 390 3.9 0.8 1.5 0.5 0.0 0.0 1.4 0.0 0.0 0.0
72 3.7 1.1 1.5 0.5 0.0 0.0 1.3 0.0 0.0 0.0
39 3.7 1.2 1.9 0.7 0.0 0.0 1.2 0.0 0.0 0.0

|q| = 0.5 390 24.5 4.8 18.8 9.2 0.1 4.9 5.5 0.0 0.0 0.0
72 24.7 4.8 18.9 9.5 0.0 4.9 5.4 0.0 0.0 0.0

|q| = 1.0 390 36.2 11.3 31.7 16.1 1.6 34.9 11.6 0.3 0.1 0.0
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Table 2 show the results with the bias direction is unknown. From table 2 we find almost

the same conclusion from table 1. If the proxy is unbiased (q = 0), the performances are

equivalent in all loss functions when the sample size n = 800 except R(−1). Interestingly,

regardless of simulation settings, proposed method 2 uniformly shows the best performance

in Table 2.

4 Conclusion

In this paper, we considered the situation where the volatility proxy is biased, and thus

analyzed its effect on the robustness of loss functions. The intuition of our results is that

bias in volatility proxy can causes misspecified rankings of competing models. Specifically,

our simulation results indicate that the bias effect on the robustness of QLIKE is higher

than those of MSE.

We introduced the robustness indicator and proposed the methods to choose a better

loss function using the indicator. Our simulation results indicate that our proposed method

is useful to avoid obtaining misspecified rankings with biased volatility proxy.
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Appendix

Proof of Proposition 1. When the Assumption (ii.a) is satisfied, the numerator of the

second term of right hand side equals 0, it is clear.

With Assumption (ii.b), we consider the second order Taylor expansion of loss function

L. That is,

L(σ̂2
t , ht) = L(σ2

t , ht) + L′(σ2
t , ht) ηt +

1

2
η′

t L′′(σ2 ∗∗
t , ht) ηt,

where, σ2 ∗∗
t is present between σ̂2

t and σ2
t . Taking Expected Value,

E[ L(σ̂2
t , ht) ] = E[ L(σ2

t , ht) ] + E[ L′(σ2
t , ht) ηt ] +

1

2
E[ η′

t L′′(σ2 ∗∗
t , ht) ηt ], (12)

where the last term does not depend on ht because of Assumption (ii.b), and the second

term is

E[ L′(σ2
t , ht) ηt | Ft−1 ] = E[ L′(σ2

t , ht) (ηt − q) | Ft−1] + q E[ L′(σ2
t , ht) | Ft−1]

= q E[ L′(σ2
t , ht) | Ft−1].

Therefore, for all t,

E[ L(σ̂2
t , ht,A) ] − E[ L(σ̂2

t , ht,B) ] = E[ L(σ2
t , ht,A) ] − E[ L(σ2

t , ht,B) ]

+q ×
{
E[ L′(σ2

t , ht,A) ] − E[ L′(σ2
t , ht,B) ]

}
.

Hence, we have

E[ L(σ2
t , ht,A) ] − E[ L(σ2

t , ht,B) ]

E[ L(σ̂2
t , ht,A) ] − E[ L(σ̂2

t , ht,B) ]
= 1 − q

E[ L′(σ2
t , ht,A) ] − E[ L′(σ2

t , ht,B) ]

E[ L(σ̂2
t , ht,A) ] − E[ L(σ̂2

t , ht,B) ]
.
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