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Finite-state Markov chains.
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Markov-switching ARMA models.
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Dynamic models, hidden variables

Dynamic : time series tutorial.
Reference: Brockwell, P. J. and R. A. Davis (2002).
Introduction to Time Series and Forecasting, Springer.

Hidden (or latent): variables that are not statistically
observable.
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Hidden variables

In the standard multivariate linear regression model, we have

Y = Xβ + U,

Y ∈ RN : endogenous/dependent variable.

X : N × K matrix, whose columns are the
exogenous/explanatory variables.

β ∈ RK : vector of parameters.

U ∈ RN : error term, which is unobserable and interpreted as a
measurement error.
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Time series models

Many models can be described as

Yt = f (Yt−1,Yt−2, · · · , ; Ut),

where Ut is an unobservable error term.

Exogenous variables can be included such that

Yt = f (Yt−1,Yt−2, · · · , ; Xt ; Ut).

We can model latent (or unobserved) variables models as

Yt = f (Yt−1,Yt−2, · · · , ;αt ; Ut),
αt = f ?(αt−1, αt−2, · · · , ; Vt),

where Ut and Vt are error terms.
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Motivation

Dynamic properties of real series may be difficult to capture
with classical models.

Latent variables may have an economic interpretation.

Allows to reduce the dimension of a statistical problem.

Entails two types of difficulties :

Probabilistic properties of such models can be difficult to
derive (existence of solutions ?...).

Standard statistical tools can be inadequate.
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Strict stationarity

(Yt)t∈Z a stochastic process (discrete time) valued in Rd .

Definition

The process (Yt) is strictly stationary if

(Yt1 ,Yt2 , · · · ,Ytk )′
d
= (Yt1+h,Yt2+h, · · · ,Ytk+h)′,

for all k ∈ N, and h, t1, · · · , tk ∈ Z.
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Second-order stationarity

Definition

The process (Yt) is second-order stationary if

(i)∀t ∈ Z,Yt ∈ L2, ie E[‖Yt‖2] <∞,

(ii)∀t ∈ Z,E[Yt ] = µ,

(iii)∀t, h ∈ Z, cov(Yt ,Yt+h) = Γ(h).

Γ(.) is the autocovariance function of (Yt).
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Concepts of noises

A (weak) white noise process (εt) is a sequence of centered and
uncorrelated variables :

εt ∈ L2,E[εt ] = 0, cov(εt , εt+h) = 0, ∀h 6= 0.

A strong white noise process (εt) is a sequence of centered,
independent variables belonging to L2.

An i.i.d. (independent and identically distributed) noise is a strong
white noise where the (εt) have the same distribution.

White noise are useful to construct more complex stationary
processes.
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Two concepts of prediction

Conditional expectation: If (Yt) is second order stationary,
then

E[Yt |Yt−1,Yt−2, · · · ]

is the best approximation of Yt (in the L2 sense) as a function
of its past.

Linear conditional expectation:

EL[Yt |Yt−1,Yt−2, · · · ]

is the best approximation of Yt as a linear function of its past.
Notation: Yt−1 the past of Yt and HY (t − 1) the linear past

of Yt .

10/38



Classical dynamic models
Dynamic models with latent variables

Two concepts of innovation

Strong innovation:

εt = Yt − E[Yt |Yt−1,Yt−2, · · · ]

is orthogonal to any function of the past of Yt , idest

E[ε′tZt−1] = 0, ∀Zt−1 ∈ Yt−1.

Linear innovation:

ε?t = Yt − EL[Yt |Yt−1,Yt−2, · · · ],

where (ε?t ) is a white noise and ε?t is orthogonal to any linear
function of the past of Yt , idest

E[ε?
′

t Zt−1] = 0,∀Zt−1 ∈ HY (t − 1).
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Wold representation theorem, 1938

Theorem

Any purely non deterministic a real centered second-order
stationary process admits an infinite Moving Average (MA)
representation

Xt = εt +
∞∑
i=1

ciεt−i ,
∑
i=1

c2
i <∞,

where (εt) is the linear innovation process of (Xt), that is

εt = Xt − E[Xt |HX (t − 1)],

where HX (t − 1) is the Hilbert space generated by the random
variables Xt−1,Xt−2, · · ·

a ∞
∩

n=−∞
HX (n) = {0}, where HX (n) denotes, in the Hilbert space of centered

and square integrable variables, the sub-space of the linear combinations of the
variables Xn−i , i ≥ 0. See Brockwell and Davis (1991)
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Moving averages

By truncating the infinite sum, we obtain the process

Xt(q) = εt +

q∑
i=1

ciεt−i ,

which is called Moving Average of order q (MA(q)).

We have
‖Xt(q)− Xt‖22 = E[ε2t

∑
i>q

c2
i ] −→

q→∞
0.

For parsimony reasons, it is however preferable to work with the
larger class of Autoregressive Moving Average (ARMA) processes.
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VARMA processes

A VARMA process is any stationary solution (when existing) (Yt)
of the stochastic recurrence equation

Yt −
p∑

i=1

AiYt−i = c + εt +

q∑
i=1

Bjεt−j ,

where (εt) is a white noise, Ai and Bj are real d × d matrices, and
c is a d-vector.

The model can be written as

Φ(B)Yt = c + Ψ(B)εt ,

where Φ(B) and Ψ(B) are lag polynomials.
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Existence of a nonanticipative solution

A solution (Yt) is called causal, or nonanticipative, if Yt can be
written as a measurable function of the εs , s ≤ t.

Proposition

If
det(Φ(z)) = 0⇒ |z | > 1,

then the VARMA model admits a unique nonanticipative
stationary solution (Yt) of the form

Yt = d +
∞∑
j=1

Cjεt−j .

15/38



Classical dynamic models
Dynamic models with latent variables

Strengths and weaknesses of VARMA

VARMA models remain very much used (mainly VAR models in
econometrics, because VARMA seem too complex).

The class is very flexible, especially when weak noise are used for
the errors (cf the Wold rep.).

VARMA provide adequate fits of many vector series, and can be
extended to incorporate seasonalities (SARMA) and even some
types of non stationarity (ARIMA).

However, they are unable to capture some phenomena called
nonlinear : volatility effects, change of regimes, bubbles...

Various alternative models have been proposed, some of which
including hidden variables (apart from the noise).
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Volatility models
Switching-regime models

Random variance

The idea is to make the standard deviation random:

εt = σtηt ,

where

(ηt) is an i.i.d. process, centered and with variance one.

(σt) is a process called volatility, σt > 0.

the variables σt and ηt are independent.
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Two classes of models

GARCH (Generalized AutoRegressive Conditional
Heteroskedasticity): σt ∈ εt−1. For instance

σ2t = ω + αε2t−1 + βσ2t−1.

Stochastic volatility (SV) models: σt /∈ εt−1. For instance,
log σ2t ∼ AR(1):

log σ2t = ω + β log σ2t−1 + τνt ,

where νt is an i.i.d. process, with νt ⊥ ηt .
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Regime-switching modeling

If d regimes have to be accounted, a latent variable
∆t ∈ {1, ..., d} can be introduced as

Yt = f (Yt−1, · · · , ; εt ; ∆t).

For instance, a switching regime-AR(1)

Yt = f (∆t)Yt−1 + εt .

The model has to be completed by specifying the dynamics of the
process (∆t):

Could be i.i.d. (but this assumption is often too restrictive).

A Markov chain.

More complex processes ? not much used.
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State-space models

Many models can be written under the form{
yt = Mtαt + dt + ut , Measurement equation
αt = Ttαt−1 + ct + Rtvt , Transition equation

where yt ∈ RN , αt ∈ Rm (state vector), (ut) and (vt) are two
sequences of independent variables, valued in RN and RK , such
that

E[ut ] = 0N ,E[vt ] = 0K ,Var(ut) = Ht ,Var(vt) = Qt ,

where Mt ,Tt and Rt are non-random N ×m, m ×m and m × K
matrices, dt ∈ RN and ct ∈ Rm non-random vectors.

22/38



Classical dynamic models
Dynamic models with latent variables

Volatility models
Switching-regime models

Example: MA model

yt = εt + θ1εt−1 + · · ·+ θqεt−q.

We then have the state-space representation{
yt = (1, θ1, · · · , θq)αt ,
αt = Tαt−1 + (εt , 0, · · · , 0)′.

αt =


εt
εt−1

...

...
εt−q

 , T =


0 0 · · · 0 0
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 .
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VAR model

yt − µ = φ1(yt−1 − µ) + · · ·+ φp(yt−p − µ) + εt .

Vector representation:
yt − µ

yt−1 − µ
...
...

yt−p+1 − µ

 =


φ1 φ2 · · · φp−1 φp
I 0 · · · 0 0
0 I · · · 0 0
...

...
. . .

...
...

0 0 · · · I 0




yt−1 − µ
yt−2 − µ

...

...
yt−p − µ

+


εt
0
...
...
0


⇔ αt = Φαt−1 + vt .

The measurement equation is

yt = (I , 0, · · · , 0)αt + µ.
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Stochastic-trend models

Structural model : involves unobservable variables which can be
interpreted.

For instance, the series can be decomposed as the sum of a trend
and a noise as

yt = µt + εt , where (µt) ⊥ (εt).

The trend can be modelled as{
µt = µt−1 + βt−1 + ηt ,
βt = βt−1 + ζt ,

where (ηt) ⊥ (ζt) are white noise with variances σ2η and σ2ζ .
The second equation introduces a stochastic slope in the random
walk followed by µt .
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Stochastic-trend models

State-space representation of the model:
yt = (1, 0)

(
µt
βt

)
+ εt ,(

µt
βt

)
=

(
1 1
0 1

)(
µt−1
βt−1

)
+

(
ηt
ζt−1

)
.

Let ∆ = 1−B the difference operator. The latent variables µt and
βt can be eliminated from the representation:

∆2yt = ζt + ∆ηt + ∆2εt .
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Random coefficients models

With temporal data, the classical linear model writes

Yt = Xtβ + Ut ,

where Xt ∈ RK is a vector of exogenous variables.
Structural changes can motivate the introduction of random
coefficients indexed by time :

Yt = Xtβt + Ut

For instance an AR(1) model can be set on the coefficients :

βt = Φβt−1 + Vt .

The latter equation is the transition equation in a state-space
model.
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Canonical stochastic volatility model

{
εt =

√
htηt ,

log ht = ω + β log ht−1 + σvt .

Similar to diffusion models used in the financial literature.

Positivity of (ht) does not entail constraints on the
coefficients.

Interpretation of the coefficients : ω is the level parameter; β
is the persistence parameter, in general β > 0; σ > 0 is the
volatility of the volatility.

Assuming P(ηt = 0) = 0, we obtain the state-space model{
log ε2t = log ht + log η2t ,
log ht = ω + β log ht−1 + σvt .
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Some reminders regarding statistical inference

Statistical model: pair (Z,P), with
Z the observation space
P the family of probability distribution on Z.

Basic assumption: the true distribution P0 belongs to P.
z is the observation or result of the random experiment of the
random function Z , whose distribution is P0.
The statistician is interested in a parameter θ.

29/38



Classical dynamic models
Dynamic models with latent variables

Volatility models
Switching-regime models

An identifiable parameter of interest is a function θ defined on P
valued in Θ ⊂ Rd :

P → Θ.

θ0 = θ(P0) is called the true value of the parameter.

One should always make sure that the parameter is identifiable
(one-to-one mapping):

Pθ = Pθ′ ⇒ θ = θ′.
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Examples of statistical parametric model

(Z,P) = ({0, 1}n,Bernoulli(θ)⊗n, θ ∈ [0, 1]).

(Z,P) = (Rn,N (m, σ2)⊗n, θ = (m, σ2) ∈ R× R+).

From the parametric model, we have a likelihood function
(observations, parameters).
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Information

Let P∗ and P two probability distribution on Z with pdf f ∗(z) and
f (z).

Definition

The Kullback information between P∗ and P is

I(P∗|P) = EP∗ [log
f ∗(Z )

f (Z )
].

It satisfies: I(P|P∗) ≥ 0 and I(P|P∗) = 0⇔ P = P∗.

32/38



Classical dynamic models
Dynamic models with latent variables

Volatility models
Switching-regime models

Fisher information

We consider a parametric conditional model.
That is for x fixed at the observed value of X , the family of
possible conditional distributions of Y given X = x denoted Px , is
defined by the pdf

{f (y |x ; θ), θ ∈ Θ}

such that

f (y |x ; θ) =
n
Π
i=1

f̃ (yi |xi ; θ).

The Fisher information matrix at x is

I xF (θ) = Vθ[∇θ log f (Y |x ; θ)].

Vθ is the conditional variance covariance matrix of the distribution
defined by f (y |x ; θ).
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Kullback and Fisher

For any x , we can define the Kullback information between
f (y |x ; θ0) and f (y |x ; θ1) for any pair (θ0, θ1) as

IxF (θ1|θ0) = I(f (y |x ; θ1)|f (y |x ; θ0)),

with x fixed. Then

[∇2
θθ′I(θ|θ0)]θ=θ0 = I xF (θ0).
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Extremal estimator

Definition

A statistic is a function of Z ∈ Z and an estimator of θ is a
statistic into θ.

Definition

An extremal estimator of θ is a statistic θ̂n(Z ) satisfying

θ̂n(Z ) = arg max
θ

Ln(Z ; θ).

Ln(.; .) is a real function defined on Z ×Θ. In statistics, we look
at the asymptotic properties of θ̂n.
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Consistency

If

Θ is compact,

Ln(Z ; θ) is continuous,

sup
θ
|Ln(Z ; θ)− L∞(Z ; θ)| P→ 0,

L∞(Z ; θ) has a unique maximum at θ0,

then θ̂
P→ θ0.
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Asymptotic normality

If

Ln(Z ; .) is twice continuously differentiable,

∇2
θθ′Ln(Z ; θ)

P→ −J(θ), ‖θ − θ0‖ ≤ ‖θ̂ − θ0‖,

J(θ0) is invertible,

√
n∇θLn(Z ; θ0)

d→ NRd (0, I (θ0)),

then
√

n(θ̂ − θ0)
d→ NRd (0, J−1(θ0)I (θ0)J−1(θ0)).
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M-estimators

General case:

Qn(Y ,X ; θ) =
1

n

n∑
i=1

l(Yi ,Xi ; θ).

The model is consistent if there is a unique maximum at θ0.

The maximum likelihood method (MLE) is defined as

θ̂ = arg min
θ

Qn(Y ,X ; θ).
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